通过神经网络预测黄玉米批发价格

Xiaojie Xu, Yun Zhang
{"title":"通过神经网络预测黄玉米批发价格","authors":"Xiaojie Xu, Yun Zhang","doi":"10.1108/econ-05-2022-0026","DOIUrl":null,"url":null,"abstract":"PurposeForecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.Design/methodology/approachThe authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.FindingsThe final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.Originality/valueThrough the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.","PeriodicalId":84551,"journal":{"name":"De economia","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Yellow corn wholesale price forecasts via the neural network\",\"authors\":\"Xiaojie Xu, Yun Zhang\",\"doi\":\"10.1108/econ-05-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeForecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.Design/methodology/approachThe authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.FindingsThe final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.Originality/valueThrough the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.\",\"PeriodicalId\":84551,\"journal\":{\"name\":\"De economia\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"De economia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/econ-05-2022-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"De economia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/econ-05-2022-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

商品价格预测对市场参与者和决策者来说是至关重要的问题。考虑到玉米的战略重要性,玉米也不例外。在本研究中,作者评估了2010年1月1日至2020年1月10日期间中国黄玉米每周批发价格指数的预测问题。设计/方法/方法采用非线性自回归神经网络作为预测工具,评估不同模型设置在算法、延迟、隐藏神经元和数据分割比率等方面的预测性能,得出最终模型。最后的模型相对简单,结果准确稳定。其中训练、验证和测试的相对均方根误差分别为1.05%、1.08%和1.03%。通过分析,研究表明了神经网络技术在商品价格预测中的实用性。这些结果可以单独作为技术预测,也可以与其他基本预测结合起来作为价格趋势前景和相应的政策分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yellow corn wholesale price forecasts via the neural network
PurposeForecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.Design/methodology/approachThe authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.FindingsThe final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.Originality/valueThrough the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Altitude and Distance Relationships with the Multidimensional Poverty Index: The case of Peru Small Firm Electricity Demand in Las Cruces, New Mexico, USA Preferential Trade Agreements and Productivity: Evidence from Peru Poverty, population growth and agglomeration effects in all Brazil cities What drives small and medium enterprises to establish and terminate banking relationships?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1