磁流体动力学生物纳米对流滑移流与旋转圆盘上的斯特凡吹气效应

Fatema Tuz Zohra, M. J. Uddin, Md Faisal Md Basir, A. Ismail
{"title":"磁流体动力学生物纳米对流滑移流与旋转圆盘上的斯特凡吹气效应","authors":"Fatema Tuz Zohra, M. J. Uddin, Md Faisal Md Basir, A. Ismail","doi":"10.1177/2397791419881580","DOIUrl":null,"url":null,"abstract":"Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc\",\"authors\":\"Fatema Tuz Zohra, M. J. Uddin, Md Faisal Md Basir, A. Ismail\",\"doi\":\"10.1177/2397791419881580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791419881580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791419881580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 59

摘要

微流控相关技术和基于微机电系统的微流控装置在科学和工程领域得到了广泛的应用。本文研究了一个稳定的强制对流流动的数学模型,通过一个旋转的圆盘浸泡在有微生物的水基纳米流体中。研究了多滑移条件下的黏性纳米流体边界层流动和磁场影响下的斯特凡吹气效应。微观纳米颗粒具有随机运动和热泳特性,认为纳米流体体积分数的变化不影响其热物理性质。控制方程为非线性偏微分方程。首先利用适当的相似变换将非线性偏微分方程转化为非线性常微分方程组,然后进行数值求解。详细说明了相关参数对速度、温度、浓度和活动微生物密度的影响。研究表明,与吹气相比,抽气提供了更好的介质来提高热、质量和微生物的传递率。该分析在电磁微泵、纳米力学等领域具有广泛的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc
Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1