Sergej Grednev, Stefan Bronder, Francesco Kunz, Martin Reis, Susanne-Marie Kirsch, Felix Welsch, Stefan Seelecke, Stefan Diebels, Anne Jung
{"title":"相关数字图像相关和红外热成像在测量泡沫和助剂细观力学变形中的适用性","authors":"Sergej Grednev, Stefan Bronder, Francesco Kunz, Martin Reis, Susanne-Marie Kirsch, Felix Welsch, Stefan Seelecke, Stefan Diebels, Anne Jung","doi":"10.1002/gamm.202200014","DOIUrl":null,"url":null,"abstract":"<p>Cellular materials such as metal foams or auxetic metamaterials are interesting microheterogeneous materials used for lightweight construction and as energy absorbers. Their macroscopic behavior is related to their specific mesoscopic deformation by a strong structure-property-relationship. Digital image correlation and infrared thermography are two methods to visualize and study the local deformation behavior in materials. The present study deals with the full-field thermomechanical analysis of the mesomechanical deformation in Ni/PU hybrid foams and Ni/polymer hybrid auxetic structures performing a correlative digital image correlation and infrared thermography. Instead of comparing and correlating only the primary output variables of both methods, strain and temperature, also strain rates and temperature rates occurring during deformation were compared. These allow for a better correlation and more conclusive results than obtained using only the primary output variables.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"45 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200014","citationCount":"1","resultStr":"{\"title\":\"Applicability of correlated digital image correlation and infrared thermography for measuring mesomechanical deformation in foams and auxetics\",\"authors\":\"Sergej Grednev, Stefan Bronder, Francesco Kunz, Martin Reis, Susanne-Marie Kirsch, Felix Welsch, Stefan Seelecke, Stefan Diebels, Anne Jung\",\"doi\":\"10.1002/gamm.202200014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular materials such as metal foams or auxetic metamaterials are interesting microheterogeneous materials used for lightweight construction and as energy absorbers. Their macroscopic behavior is related to their specific mesoscopic deformation by a strong structure-property-relationship. Digital image correlation and infrared thermography are two methods to visualize and study the local deformation behavior in materials. The present study deals with the full-field thermomechanical analysis of the mesomechanical deformation in Ni/PU hybrid foams and Ni/polymer hybrid auxetic structures performing a correlative digital image correlation and infrared thermography. Instead of comparing and correlating only the primary output variables of both methods, strain and temperature, also strain rates and temperature rates occurring during deformation were compared. These allow for a better correlation and more conclusive results than obtained using only the primary output variables.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"45 3-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200014\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Applicability of correlated digital image correlation and infrared thermography for measuring mesomechanical deformation in foams and auxetics
Cellular materials such as metal foams or auxetic metamaterials are interesting microheterogeneous materials used for lightweight construction and as energy absorbers. Their macroscopic behavior is related to their specific mesoscopic deformation by a strong structure-property-relationship. Digital image correlation and infrared thermography are two methods to visualize and study the local deformation behavior in materials. The present study deals with the full-field thermomechanical analysis of the mesomechanical deformation in Ni/PU hybrid foams and Ni/polymer hybrid auxetic structures performing a correlative digital image correlation and infrared thermography. Instead of comparing and correlating only the primary output variables of both methods, strain and temperature, also strain rates and temperature rates occurring during deformation were compared. These allow for a better correlation and more conclusive results than obtained using only the primary output variables.