M. Utzeri, A. Bhagavatam, E. Mancini, G. Dinda, M. Sasso, G. Newaz
{"title":"激光金属沉积Inconel 625的准静态和动态行为:实验表征和本构建模","authors":"M. Utzeri, A. Bhagavatam, E. Mancini, G. Dinda, M. Sasso, G. Newaz","doi":"10.1115/1.4051087","DOIUrl":null,"url":null,"abstract":"\n Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson–Cook and Cowper–Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"12 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quasi-Static and Dynamic Behavior of Inconel 625 Obtained by Laser Metal Deposition: Experimental Characterization and Constitutive Modeling\",\"authors\":\"M. Utzeri, A. Bhagavatam, E. Mancini, G. Dinda, M. Sasso, G. Newaz\",\"doi\":\"10.1115/1.4051087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson–Cook and Cowper–Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051087\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4051087","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Quasi-Static and Dynamic Behavior of Inconel 625 Obtained by Laser Metal Deposition: Experimental Characterization and Constitutive Modeling
Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson–Cook and Cowper–Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.