{"title":"变性质生物纳米流体的非定常三维滞止点磁流体动力流动","authors":"Md Faisal Md Basir, M. J. Uddin, A. Ismail","doi":"10.1177/2397791418817844","DOIUrl":null,"url":null,"abstract":"Unsteady three-dimensional laminar stagnation point forced convective boundary layer magnetohydrodynamic flow of a bionanofluid with variable transport properties is studied theoretically and numerically. Thermal convective and zero mass flux boundary conditions are incorporated in this study. The transport properties are assumed to be a function of nanoparticle volume fraction to get physically realistic results. The dimensional boundary layer equations along with the coupled boundary conditions are transformed via similarity transformations into a system of ordinary differential equations. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth-, fifth-order numerical method. The effect of selected governing parameters, namely, viscosity, thermal conductive, mass diffusivity, microorganism diffusivity, magnetic field and bioconvection Schmidt number, on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism, skin friction coefficient, heat transfer rate, mass transfer rate and microorganism transfer rate, is illustrated graphically and interpreted in detail. Comparisons with previous works are carried out for some limiting cases and found to be in good agreement.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"31 1","pages":"123 - 134"},"PeriodicalIF":4.2000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsteady three-dimensional stagnation point magnetohydrodynamic flow of bionanofluid with variable properties\",\"authors\":\"Md Faisal Md Basir, M. J. Uddin, A. Ismail\",\"doi\":\"10.1177/2397791418817844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsteady three-dimensional laminar stagnation point forced convective boundary layer magnetohydrodynamic flow of a bionanofluid with variable transport properties is studied theoretically and numerically. Thermal convective and zero mass flux boundary conditions are incorporated in this study. The transport properties are assumed to be a function of nanoparticle volume fraction to get physically realistic results. The dimensional boundary layer equations along with the coupled boundary conditions are transformed via similarity transformations into a system of ordinary differential equations. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth-, fifth-order numerical method. The effect of selected governing parameters, namely, viscosity, thermal conductive, mass diffusivity, microorganism diffusivity, magnetic field and bioconvection Schmidt number, on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism, skin friction coefficient, heat transfer rate, mass transfer rate and microorganism transfer rate, is illustrated graphically and interpreted in detail. Comparisons with previous works are carried out for some limiting cases and found to be in good agreement.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"31 1\",\"pages\":\"123 - 134\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791418817844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791418817844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Unsteady three-dimensional stagnation point magnetohydrodynamic flow of bionanofluid with variable properties
Unsteady three-dimensional laminar stagnation point forced convective boundary layer magnetohydrodynamic flow of a bionanofluid with variable transport properties is studied theoretically and numerically. Thermal convective and zero mass flux boundary conditions are incorporated in this study. The transport properties are assumed to be a function of nanoparticle volume fraction to get physically realistic results. The dimensional boundary layer equations along with the coupled boundary conditions are transformed via similarity transformations into a system of ordinary differential equations. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth-, fifth-order numerical method. The effect of selected governing parameters, namely, viscosity, thermal conductive, mass diffusivity, microorganism diffusivity, magnetic field and bioconvection Schmidt number, on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism, skin friction coefficient, heat transfer rate, mass transfer rate and microorganism transfer rate, is illustrated graphically and interpreted in detail. Comparisons with previous works are carried out for some limiting cases and found to be in good agreement.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.