超图马尔可夫算子,特征值和近似算法

Anand Louis
{"title":"超图马尔可夫算子,特征值和近似算法","authors":"Anand Louis","doi":"10.1145/2746539.2746555","DOIUrl":null,"url":null,"abstract":"The celebrated Cheeger's Inequality [AM85,a86] establishes a bound on the expansion of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate various combinatorial properties of the hypergraph. In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian matrix of graphs. Our operator can be viewed as the gradient operator applied to a certain natural quadratic form for hypergraphs. We show that various hypergraph parameters (for e.g. expansion, diameter, etc) can be bounded using this operator's eigenvalues. We study the heat diffusion process associated with this Laplacian operator, and bound its parameters in terms of its spectra. All our results are generalizations of the corresponding results for graphs. We show that there can be no linear operator for hypergraphs whose spectra captures hypergraph expansion in a Cheeger-like manner. Our Laplacian operator is non-linear, and thus computing its eigenvalues exactly is intractable. For any k, we give a polynomial time algorithm to compute an approximation to the kth smallest eigenvalue of the operator. We show that this approximation factor is optimal under the SSE hypothesis (introduced by [RS10]) for constant values of k. Finally, using the factor preserving reduction from vertex expansion in graphs to hypergraph expansion, we show that all our results for hypergraphs extend to vertex expansion in graphs.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Hypergraph Markov Operators, Eigenvalues and Approximation Algorithms\",\"authors\":\"Anand Louis\",\"doi\":\"10.1145/2746539.2746555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The celebrated Cheeger's Inequality [AM85,a86] establishes a bound on the expansion of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate various combinatorial properties of the hypergraph. In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian matrix of graphs. Our operator can be viewed as the gradient operator applied to a certain natural quadratic form for hypergraphs. We show that various hypergraph parameters (for e.g. expansion, diameter, etc) can be bounded using this operator's eigenvalues. We study the heat diffusion process associated with this Laplacian operator, and bound its parameters in terms of its spectra. All our results are generalizations of the corresponding results for graphs. We show that there can be no linear operator for hypergraphs whose spectra captures hypergraph expansion in a Cheeger-like manner. Our Laplacian operator is non-linear, and thus computing its eigenvalues exactly is intractable. For any k, we give a polynomial time algorithm to compute an approximation to the kth smallest eigenvalue of the operator. We show that this approximation factor is optimal under the SSE hypothesis (introduced by [RS10]) for constant values of k. Finally, using the factor preserving reduction from vertex expansion in graphs to hypergraph expansion, we show that all our results for hypergraphs extend to vertex expansion in graphs.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

著名的Cheeger不等式[AM85,a86]通过谱建立了图的展开界。这个不等式是基于图的邻接矩阵(和其他相关矩阵)的特征值和特征向量研究的图的丰富谱理论的核心。为超图定义一个合适的谱模型,其谱可以用来估计超图的各种组合性质,这仍然是一个开放的问题。本文引入了一种推广图的拉普拉斯矩阵的超图拉普拉斯算子。我们的算子可以看作是应用于超图的某种自然二次型的梯度算子。我们证明了各种超图参数(例如展开,直径等)可以使用该算子的特征值有界。我们研究了与这个拉普拉斯算子相关的热扩散过程,并根据它的谱限定了它的参数。我们所有的结果都是对图的相应结果的推广。我们证明了对于其谱以Cheeger-like方式捕获超图展开的超图,不可能存在线性算子。我们的拉普拉斯算子是非线性的,因此精确计算它的特征值是很棘手的。对于任意k,我们给出一个多项式时间算法来计算算子的第k个最小特征值的近似值。我们证明了对于k的恒定值,在SSE假设(由[RS10]引入)下,该近似因子是最优的。最后,使用从图中的顶点展开到超图展开的因子保留约简,我们证明了超图的所有结果都扩展到图中的顶点展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypergraph Markov Operators, Eigenvalues and Approximation Algorithms
The celebrated Cheeger's Inequality [AM85,a86] establishes a bound on the expansion of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate various combinatorial properties of the hypergraph. In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian matrix of graphs. Our operator can be viewed as the gradient operator applied to a certain natural quadratic form for hypergraphs. We show that various hypergraph parameters (for e.g. expansion, diameter, etc) can be bounded using this operator's eigenvalues. We study the heat diffusion process associated with this Laplacian operator, and bound its parameters in terms of its spectra. All our results are generalizations of the corresponding results for graphs. We show that there can be no linear operator for hypergraphs whose spectra captures hypergraph expansion in a Cheeger-like manner. Our Laplacian operator is non-linear, and thus computing its eigenvalues exactly is intractable. For any k, we give a polynomial time algorithm to compute an approximation to the kth smallest eigenvalue of the operator. We show that this approximation factor is optimal under the SSE hypothesis (introduced by [RS10]) for constant values of k. Finally, using the factor preserving reduction from vertex expansion in graphs to hypergraph expansion, we show that all our results for hypergraphs extend to vertex expansion in graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Parallel Complexity Graphs and Memory-Hard Functions Lp Row Sampling by Lewis Weights Approximate Distance Oracles with Improved Bounds Proceedings of the forty-seventh annual ACM symposium on Theory of Computing Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1