{"title":"一种检测成人就寝时间、起床时间和睡眠时间的新算法的有效性","authors":"Kyle R. Leister, J. Garay, T. Barreira","doi":"10.1123/jmpb.2021-0027","DOIUrl":null,"url":null,"abstract":"Purpose: To determine accuracy of activPAL Technologies’ CREA algorithm to assess bedtime, wake time, and sleep time. Methods: As part of a larger study, 104 participants recorded nightly sleep logs (LOGs) and wore the activPAL accelerometer at the thigh and ActiGraph accelerometer at the hip for 24 hr/day, for seven consecutive days. For sleep LOGs, participants recorded nightly bed and daily wake times. Previously validated ActiGraph, proprietary activPAL, and the Winkler sleep algorithm were used to compute sleep variables. Eighty-seven participants provided 2+ days of valid data. Pearson correlations, paired samples t tests, and equivalency tests were used to examine relationships and differences between methods (activPAL vs. ActiGraph, activPAL vs. LOG, and activPAL vs. Winkler algorithm). Results: For screened data, moderately high to high correlations but significant mean differences were found between activPAL versus ActiGraph for bedtime (t86 = −6.80, p ≤ .01, r = .84), wake time (t86 = 4.80, p ≤ .01, r = .93), and sleep time (t86 = 7.99, p ≤ .01, r = .88). activPAL versus LOG comparisons also yielded significant mean differences and moderately high to high correlations for bedtime (t86 = −4.68, p ≤ .01, r = .82), wake time (t86 = 8.14, p ≤ .01, r = .93), and sleep time (t86 = 8.60, p ≤ .01, r = .72). Equivalency testing revealed that equivalency could not be claimed between activPAL versus LOG or activPAL versus ActiGraph comparisons, though the activPAL and Winkler algorithm were equivalent. Conclusion: The activPAL algorithm overestimated sleep time by detecting earlier bedtimes and later wake times. Because of the significant differences between algorithms, bedtime, wake time, and sleep time are not interchangeable between methods.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Validity of a Novel Algorithm to Detect Bedtime, Wake Time, and Sleep Time in Adults\",\"authors\":\"Kyle R. Leister, J. Garay, T. Barreira\",\"doi\":\"10.1123/jmpb.2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To determine accuracy of activPAL Technologies’ CREA algorithm to assess bedtime, wake time, and sleep time. Methods: As part of a larger study, 104 participants recorded nightly sleep logs (LOGs) and wore the activPAL accelerometer at the thigh and ActiGraph accelerometer at the hip for 24 hr/day, for seven consecutive days. For sleep LOGs, participants recorded nightly bed and daily wake times. Previously validated ActiGraph, proprietary activPAL, and the Winkler sleep algorithm were used to compute sleep variables. Eighty-seven participants provided 2+ days of valid data. Pearson correlations, paired samples t tests, and equivalency tests were used to examine relationships and differences between methods (activPAL vs. ActiGraph, activPAL vs. LOG, and activPAL vs. Winkler algorithm). Results: For screened data, moderately high to high correlations but significant mean differences were found between activPAL versus ActiGraph for bedtime (t86 = −6.80, p ≤ .01, r = .84), wake time (t86 = 4.80, p ≤ .01, r = .93), and sleep time (t86 = 7.99, p ≤ .01, r = .88). activPAL versus LOG comparisons also yielded significant mean differences and moderately high to high correlations for bedtime (t86 = −4.68, p ≤ .01, r = .82), wake time (t86 = 8.14, p ≤ .01, r = .93), and sleep time (t86 = 8.60, p ≤ .01, r = .72). Equivalency testing revealed that equivalency could not be claimed between activPAL versus LOG or activPAL versus ActiGraph comparisons, though the activPAL and Winkler algorithm were equivalent. Conclusion: The activPAL algorithm overestimated sleep time by detecting earlier bedtimes and later wake times. Because of the significant differences between algorithms, bedtime, wake time, and sleep time are not interchangeable between methods.\",\"PeriodicalId\":73572,\"journal\":{\"name\":\"Journal for the measurement of physical behaviour\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for the measurement of physical behaviour\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1123/jmpb.2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
目的:确定activPAL Technologies的CREA算法评估就寝时间、清醒时间和睡眠时间的准确性。方法:作为一项更大规模研究的一部分,104名参与者记录了夜间睡眠日志(log),并连续7天每天24小时在大腿上佩戴activPAL加速计,在臀部佩戴ActiGraph加速计。对于睡眠日志,参与者记录了每晚的睡眠时间和每天醒来的时间。使用先前验证的ActiGraph、专有的activPAL和Winkler睡眠算法来计算睡眠变量。87名参与者提供了2天以上的有效数据。使用Pearson相关性、配对样本t检验和等效性检验来检查方法之间的关系和差异(activPAL与ActiGraph、activPAL与LOG、activPAL与Winkler算法)。结果:对于筛选的数据,activPAL与ActiGraph在就寝时间之间存在中度至高度相关性,但平均差异显著(t86 = - 6.80, p≤)。01, r = 0.84),唤醒时间(t86 = 4.80, p≤。0.01, r = 0.93),睡眠时间(t86 = 7.99, p≤。01, r = .88)。activPAL与LOG的比较也产生了显著的平均差异和中度至高度的相关性(t86 = - 4.68, p≤)。01, r = .82),唤醒时间(t86 = 8.14, p≤。0.01, r = .93),睡眠时间(t86 = 8.60, p≤。01, r = .72)。等效性测试显示,尽管activPAL和Winkler算法是等效的,但activPAL与LOG或activPAL与ActiGraph之间的比较不能声称等效性。结论:activPAL算法通过检测较早的就寝时间和较晚的起床时间而高估了睡眠时间。由于算法之间的显著差异,就寝时间、醒来时间和睡眠时间在方法之间是不可互换的。
Validity of a Novel Algorithm to Detect Bedtime, Wake Time, and Sleep Time in Adults
Purpose: To determine accuracy of activPAL Technologies’ CREA algorithm to assess bedtime, wake time, and sleep time. Methods: As part of a larger study, 104 participants recorded nightly sleep logs (LOGs) and wore the activPAL accelerometer at the thigh and ActiGraph accelerometer at the hip for 24 hr/day, for seven consecutive days. For sleep LOGs, participants recorded nightly bed and daily wake times. Previously validated ActiGraph, proprietary activPAL, and the Winkler sleep algorithm were used to compute sleep variables. Eighty-seven participants provided 2+ days of valid data. Pearson correlations, paired samples t tests, and equivalency tests were used to examine relationships and differences between methods (activPAL vs. ActiGraph, activPAL vs. LOG, and activPAL vs. Winkler algorithm). Results: For screened data, moderately high to high correlations but significant mean differences were found between activPAL versus ActiGraph for bedtime (t86 = −6.80, p ≤ .01, r = .84), wake time (t86 = 4.80, p ≤ .01, r = .93), and sleep time (t86 = 7.99, p ≤ .01, r = .88). activPAL versus LOG comparisons also yielded significant mean differences and moderately high to high correlations for bedtime (t86 = −4.68, p ≤ .01, r = .82), wake time (t86 = 8.14, p ≤ .01, r = .93), and sleep time (t86 = 8.60, p ≤ .01, r = .72). Equivalency testing revealed that equivalency could not be claimed between activPAL versus LOG or activPAL versus ActiGraph comparisons, though the activPAL and Winkler algorithm were equivalent. Conclusion: The activPAL algorithm overestimated sleep time by detecting earlier bedtimes and later wake times. Because of the significant differences between algorithms, bedtime, wake time, and sleep time are not interchangeable between methods.