{"title":"以蛋白为燃料绿色合成纳米MgFe2O4及其理化性质","authors":"P. Udhaya, M. Meena, M. Queen","doi":"10.26438/ijsrpas/v7i2.7174","DOIUrl":null,"url":null,"abstract":"Received: 12/Apr/2019, Accepted: 20/Apr/2019, Online: 30/Apr/2019 Abstract— This research article reports the green synthesis of magnesium ferrite nanoparticle via auto-combustion using albumen as fuel. The synthesized nanoparticles are confirmed to process single phase and spinel structure with the help of powder X ray diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FTIR). Which also determines the functional groups present in the nanoparticles. EDAX results provide the percentage composition of the elements in the synthesized sample. The Field Emission Scanning Microscope (FESEM) reveals the agglomerated nature of ferrite nanoparticles. Magnetic moment and retentivity were obtained using Vibrating Sample Magnetometer (VSM). Dielectric properties of the as prepared samples were measured by two-probe method for various frequencies ranging from 100Hz-1MHz.","PeriodicalId":14348,"journal":{"name":"International Journal of Scientific Research in Physics and Applied Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Green synthesis of MgFe2O4 nanoparticles using Albumen as Fuel and their Physico-Chemical Properties\",\"authors\":\"P. Udhaya, M. Meena, M. Queen\",\"doi\":\"10.26438/ijsrpas/v7i2.7174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 12/Apr/2019, Accepted: 20/Apr/2019, Online: 30/Apr/2019 Abstract— This research article reports the green synthesis of magnesium ferrite nanoparticle via auto-combustion using albumen as fuel. The synthesized nanoparticles are confirmed to process single phase and spinel structure with the help of powder X ray diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FTIR). Which also determines the functional groups present in the nanoparticles. EDAX results provide the percentage composition of the elements in the synthesized sample. The Field Emission Scanning Microscope (FESEM) reveals the agglomerated nature of ferrite nanoparticles. Magnetic moment and retentivity were obtained using Vibrating Sample Magnetometer (VSM). Dielectric properties of the as prepared samples were measured by two-probe method for various frequencies ranging from 100Hz-1MHz.\",\"PeriodicalId\":14348,\"journal\":{\"name\":\"International Journal of Scientific Research in Physics and Applied Sciences\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Physics and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26438/ijsrpas/v7i2.7174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Physics and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26438/ijsrpas/v7i2.7174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green synthesis of MgFe2O4 nanoparticles using Albumen as Fuel and their Physico-Chemical Properties
Received: 12/Apr/2019, Accepted: 20/Apr/2019, Online: 30/Apr/2019 Abstract— This research article reports the green synthesis of magnesium ferrite nanoparticle via auto-combustion using albumen as fuel. The synthesized nanoparticles are confirmed to process single phase and spinel structure with the help of powder X ray diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FTIR). Which also determines the functional groups present in the nanoparticles. EDAX results provide the percentage composition of the elements in the synthesized sample. The Field Emission Scanning Microscope (FESEM) reveals the agglomerated nature of ferrite nanoparticles. Magnetic moment and retentivity were obtained using Vibrating Sample Magnetometer (VSM). Dielectric properties of the as prepared samples were measured by two-probe method for various frequencies ranging from 100Hz-1MHz.