基于标准计算假设的非交互式委托和批NP验证

Zvika Brakerski, Justin Holmgren, Y. Kalai
{"title":"基于标准计算假设的非交互式委托和批NP验证","authors":"Zvika Brakerski, Justin Holmgren, Y. Kalai","doi":"10.1145/3055399.3055497","DOIUrl":null,"url":null,"abstract":"We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polynomial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomial-factor approximation of short-vector lattice problems). In our protocol, the verifier sets up a public key ahead of time, and this key can be used by any prover to prove arbitrary statements by simpling sending a proof to the verifier. Verification is done using a secret verification key, and soundness relies on this key not being known to the prover. Our protocol further allows to prove statements about computations of arbitrary RAM machines. Previous works either relied on knowledge assumptions, or could only offer non-adaptive two-message protocols (where the first message could not be re-used), and required either obfuscation-based assumptions or super-polynomial hardness assumptions. We show that our techniques can also be applied to construct a new type of (non-adaptive) 2-message argument for batch NP-statements. Specifically, we can simultaneously prove (with computational soundness) the membership of multiple instances in a given NP language, with communication complexity proportional to the length of a single witness.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Non-interactive delegation and batch NP verification from standard computational assumptions\",\"authors\":\"Zvika Brakerski, Justin Holmgren, Y. Kalai\",\"doi\":\"10.1145/3055399.3055497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polynomial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomial-factor approximation of short-vector lattice problems). In our protocol, the verifier sets up a public key ahead of time, and this key can be used by any prover to prove arbitrary statements by simpling sending a proof to the verifier. Verification is done using a secret verification key, and soundness relies on this key not being known to the prover. Our protocol further allows to prove statements about computations of arbitrary RAM machines. Previous works either relied on knowledge assumptions, or could only offer non-adaptive two-message protocols (where the first message could not be re-used), and required either obfuscation-based assumptions or super-polynomial hardness assumptions. We show that our techniques can also be applied to construct a new type of (non-adaptive) 2-message argument for batch NP-statements. Specifically, we can simultaneously prove (with computational soundness) the membership of multiple instances in a given NP language, with communication complexity proportional to the length of a single witness.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们提出了一种自适应的非交互协议,用于在固定多项式时间内验证任意有效的计算。我们的协议在计算上是合理的,可以基于任何计算PIR方案,这反过来又可以基于标准的多项式时间密码假设(例如,短向量晶格问题的多项式因子近似的最坏情况的硬度)。在我们的协议中,验证者提前设置了公钥,任何证明者都可以通过简单地向验证者发送证明来使用该公钥来证明任意语句。验证是使用秘密验证密钥完成的,可靠性依赖于该密钥不为证明者所知。我们的协议进一步允许证明关于任意RAM机器计算的陈述。以前的工作要么依赖于知识假设,要么只能提供非自适应的双消息协议(其中第一条消息不能重用),并且需要基于混淆的假设或超多项式硬度假设。我们展示了我们的技术也可以应用于为批处理np语句构造一种新的(非自适应的)2消息参数。具体来说,我们可以同时证明给定NP语言中多个实例的隶属性(具有计算可靠性),通信复杂度与单个见证的长度成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-interactive delegation and batch NP verification from standard computational assumptions
We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polynomial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomial-factor approximation of short-vector lattice problems). In our protocol, the verifier sets up a public key ahead of time, and this key can be used by any prover to prove arbitrary statements by simpling sending a proof to the verifier. Verification is done using a secret verification key, and soundness relies on this key not being known to the prover. Our protocol further allows to prove statements about computations of arbitrary RAM machines. Previous works either relied on knowledge assumptions, or could only offer non-adaptive two-message protocols (where the first message could not be re-used), and required either obfuscation-based assumptions or super-polynomial hardness assumptions. We show that our techniques can also be applied to construct a new type of (non-adaptive) 2-message argument for batch NP-statements. Specifically, we can simultaneously prove (with computational soundness) the membership of multiple instances in a given NP language, with communication complexity proportional to the length of a single witness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1