{"title":"基于深度学习的毫米波无线体域网络自适应波束形成","authors":"H. Ngo, Hua Fang, Honggang Wang","doi":"10.1109/GLOBECOM42002.2020.9322515","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) is becoming a mainstream for telecommunication industry. With the utilization of millimeter-wave in 5G network, it becomes feasible to use beamforming techniques for on-body sensors in Wireless Body Area Network (WBAN) applications. Thus, there is a need for developing beamforming algorithms that can optimize WBAN network performance and a realistic dataset that can be used for training, testing, and benchmarking of the algorithms. Thus, we propose a dataset generation method for mmWave WBAN that utilizes computer vision and an adaptive deep learning-based algorithm for performance optimization of mmWave WBAN beamforming. Two major ideas are proposed: First, collecting human poses from estimation of 3D human poses in videos and generating more realistic poses using generative adversarial nets (GAN) are adopted; second, a GAN aims to predict the next beamforming directions using the previous set of directions as inputs. With available labeled human pose videos, the WBAN dataset we generate provides a sufficient amount of samples for training, testing, and benchmarking of beamforming algorithms. Additionally, the proposed adaptive beamforming algorithm does not require any intrusive data gathering methods. Our numerical studies show the advantages of our proposed approaches.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning-based Adaptive Beamforming for mmWave Wireless Body Area Network\",\"authors\":\"H. Ngo, Hua Fang, Honggang Wang\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) is becoming a mainstream for telecommunication industry. With the utilization of millimeter-wave in 5G network, it becomes feasible to use beamforming techniques for on-body sensors in Wireless Body Area Network (WBAN) applications. Thus, there is a need for developing beamforming algorithms that can optimize WBAN network performance and a realistic dataset that can be used for training, testing, and benchmarking of the algorithms. Thus, we propose a dataset generation method for mmWave WBAN that utilizes computer vision and an adaptive deep learning-based algorithm for performance optimization of mmWave WBAN beamforming. Two major ideas are proposed: First, collecting human poses from estimation of 3D human poses in videos and generating more realistic poses using generative adversarial nets (GAN) are adopted; second, a GAN aims to predict the next beamforming directions using the previous set of directions as inputs. With available labeled human pose videos, the WBAN dataset we generate provides a sufficient amount of samples for training, testing, and benchmarking of beamforming algorithms. Additionally, the proposed adaptive beamforming algorithm does not require any intrusive data gathering methods. Our numerical studies show the advantages of our proposed approaches.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"3 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-based Adaptive Beamforming for mmWave Wireless Body Area Network
Artificial intelligence (AI) is becoming a mainstream for telecommunication industry. With the utilization of millimeter-wave in 5G network, it becomes feasible to use beamforming techniques for on-body sensors in Wireless Body Area Network (WBAN) applications. Thus, there is a need for developing beamforming algorithms that can optimize WBAN network performance and a realistic dataset that can be used for training, testing, and benchmarking of the algorithms. Thus, we propose a dataset generation method for mmWave WBAN that utilizes computer vision and an adaptive deep learning-based algorithm for performance optimization of mmWave WBAN beamforming. Two major ideas are proposed: First, collecting human poses from estimation of 3D human poses in videos and generating more realistic poses using generative adversarial nets (GAN) are adopted; second, a GAN aims to predict the next beamforming directions using the previous set of directions as inputs. With available labeled human pose videos, the WBAN dataset we generate provides a sufficient amount of samples for training, testing, and benchmarking of beamforming algorithms. Additionally, the proposed adaptive beamforming algorithm does not require any intrusive data gathering methods. Our numerical studies show the advantages of our proposed approaches.