结合DPCM和DWT的霍夫曼图像压缩

M. Abo-Zahhad, R. Gharieb, Sabah M. Ahmed, M. Abd-Ellah
{"title":"结合DPCM和DWT的霍夫曼图像压缩","authors":"M. Abo-Zahhad, R. Gharieb, Sabah M. Ahmed, M. Abd-Ellah","doi":"10.4236/JSIP.2015.62012","DOIUrl":null,"url":null,"abstract":"This paper presents a medical image compression approach. In this approach, first the image is preprocessed by Differential Pulse Code Modulator (DPCM), second, the output of the DPCM is wavelet transformed, and finally the Huffman encoding is applied to the resulting coefficients. Therefore, this approach provides theoretically threefold compression. Simulation results are presented to compare the performance of the proposed (DPCM-DWT-Huffman) approach with the performances of the Huffman incorporating DPCM (DPCM-Huffman), the DWT-Huffman and the Huffman encoding alone. Several quantitative indexes are computed to measure the performance of the four algorisms. The results show that the DPCM-DWT-Huffman, the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms provide compression ratio (CR) of 6.4837, 4.32, 2.2751 and 1.235, respectively. The results also confirm that while the proposed DPCM-DWT-Huffman approach enhances the CR, it does not deteriorate other performance quantitative measures in comparison with the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"27 1","pages":"123-135"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Huffman Image Compression Incorporating DPCM and DWT\",\"authors\":\"M. Abo-Zahhad, R. Gharieb, Sabah M. Ahmed, M. Abd-Ellah\",\"doi\":\"10.4236/JSIP.2015.62012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a medical image compression approach. In this approach, first the image is preprocessed by Differential Pulse Code Modulator (DPCM), second, the output of the DPCM is wavelet transformed, and finally the Huffman encoding is applied to the resulting coefficients. Therefore, this approach provides theoretically threefold compression. Simulation results are presented to compare the performance of the proposed (DPCM-DWT-Huffman) approach with the performances of the Huffman incorporating DPCM (DPCM-Huffman), the DWT-Huffman and the Huffman encoding alone. Several quantitative indexes are computed to measure the performance of the four algorisms. The results show that the DPCM-DWT-Huffman, the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms provide compression ratio (CR) of 6.4837, 4.32, 2.2751 and 1.235, respectively. The results also confirm that while the proposed DPCM-DWT-Huffman approach enhances the CR, it does not deteriorate other performance quantitative measures in comparison with the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"27 1\",\"pages\":\"123-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.62012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.62012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种医学图像压缩方法。该方法首先对图像进行差分脉冲编码调制器(DPCM)预处理,然后对DPCM输出进行小波变换,最后对得到的系数进行霍夫曼编码。因此,这种方法理论上提供了三倍的压缩。仿真结果比较了所提出的(DPCM-DWT-Huffman)方法与合并DPCM (DPCM-Huffman)、DWT-Huffman和单独使用Huffman编码的Huffman方法的性能。计算了几个量化指标来衡量四种算法的性能。结果表明,DPCM-DWT-Huffman、DWT-Huffman、DPCM-Huffman和Huffman算法的压缩比(CR)分别为6.4837、4.32、2.2751和1.235。结果还证实,虽然所提出的DPCM-DWT-Huffman方法增强了CR,但与DWT-Huffman, DPCM-Huffman和Huffman算法相比,它不会降低其他性能量化指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Huffman Image Compression Incorporating DPCM and DWT
This paper presents a medical image compression approach. In this approach, first the image is preprocessed by Differential Pulse Code Modulator (DPCM), second, the output of the DPCM is wavelet transformed, and finally the Huffman encoding is applied to the resulting coefficients. Therefore, this approach provides theoretically threefold compression. Simulation results are presented to compare the performance of the proposed (DPCM-DWT-Huffman) approach with the performances of the Huffman incorporating DPCM (DPCM-Huffman), the DWT-Huffman and the Huffman encoding alone. Several quantitative indexes are computed to measure the performance of the four algorisms. The results show that the DPCM-DWT-Huffman, the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms provide compression ratio (CR) of 6.4837, 4.32, 2.2751 and 1.235, respectively. The results also confirm that while the proposed DPCM-DWT-Huffman approach enhances the CR, it does not deteriorate other performance quantitative measures in comparison with the DWT-Huffman, the DPCM-Huffman and the Huffman algorisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Variational Mode Decomposition for Bearing Fault Detection White Blood Cells Detection Using Spectral Tresholding 3D Ergonomic Board: Kids Teaching and Learning Proposition Design and Evaluation of a Distributed Security Framework for the Internet of Things Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion of Selection Methods, and Multiclass-Naïve Bayes Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1