D. O’Gorman, Z. Naderi, A. Yeganeh, R. Malboosbaf, E. Eriksen
{"title":"多矿物质海洋提取物LithoLexal®Bone对骨质减少和骨质疏松症的辅助治疗","authors":"D. O’Gorman, Z. Naderi, A. Yeganeh, R. Malboosbaf, E. Eriksen","doi":"10.3390/osteology3010004","DOIUrl":null,"url":null,"abstract":"There is evidence to suggest that restoration of major/rare biominerals by supplementation can produce osteogenic and anti-resorptive effects in humans. LithoLexal® is a natural extract harvested from a marine alga, Lithothamnion sp., with a porous microstructure and multimolecular composition rich in calcium (32% w/w) and magnesium (2.2% w/w) together with ~72 trace bioelements. In vitro, LithoLexal® demonstrated cellular-level osteogenic efficacy through enhancing the maturation and activity of pre-osteoblasts. This extract also expressed the ability to suppress osteoclastogenesis by downregulating the pro-resorptive cytokines TNF-α and IL-1β and the master regulator of inflammation NF-κB. Parathyroid hormone inhibition of parathyroid hormone secretion is another bioactivity of LithoLexal® Bone reported with both short- and long-term administration at a longer duration and higher magnitude than what calcium carbonate could induce. Due to these bioactivities that affect pathogenetic factors of osteoporosis, LithoLexal® Bone is referred to as a disease-modifying adjunctive therapy (DMAT). In postmenopausal animal models, LithoLexal® monotherapy preserved bone mineral density, microarchitecture, and biomechanical properties, while calcium carbonate failed to produce significant outcomes. The pro-resorptive effect of a high-fat diet was also efficiently counteracted in vivo by supplementary LithoLexal®. A large clinical trial on postmenopausal women verified the mitigating effects of LithoLexal® Bone on bone resorption and turnover rate. The characteristic composition of LithoLexal® together with its lattice microstructure are suggested to underlie its in vivo bioactivities. In conclusion, adjunctive therapy with LithoLexal® Bone is an attractive option for clinical prevention and treatment of osteopenia/osteoporosis.","PeriodicalId":36674,"journal":{"name":"Clinical Osteology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disease-Modifying Adjunctive Therapy of Osteopenia and Osteoporosis with a Multimineral Marine Extract, LithoLexal® Bone\",\"authors\":\"D. O’Gorman, Z. Naderi, A. Yeganeh, R. Malboosbaf, E. Eriksen\",\"doi\":\"10.3390/osteology3010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is evidence to suggest that restoration of major/rare biominerals by supplementation can produce osteogenic and anti-resorptive effects in humans. LithoLexal® is a natural extract harvested from a marine alga, Lithothamnion sp., with a porous microstructure and multimolecular composition rich in calcium (32% w/w) and magnesium (2.2% w/w) together with ~72 trace bioelements. In vitro, LithoLexal® demonstrated cellular-level osteogenic efficacy through enhancing the maturation and activity of pre-osteoblasts. This extract also expressed the ability to suppress osteoclastogenesis by downregulating the pro-resorptive cytokines TNF-α and IL-1β and the master regulator of inflammation NF-κB. Parathyroid hormone inhibition of parathyroid hormone secretion is another bioactivity of LithoLexal® Bone reported with both short- and long-term administration at a longer duration and higher magnitude than what calcium carbonate could induce. Due to these bioactivities that affect pathogenetic factors of osteoporosis, LithoLexal® Bone is referred to as a disease-modifying adjunctive therapy (DMAT). In postmenopausal animal models, LithoLexal® monotherapy preserved bone mineral density, microarchitecture, and biomechanical properties, while calcium carbonate failed to produce significant outcomes. The pro-resorptive effect of a high-fat diet was also efficiently counteracted in vivo by supplementary LithoLexal®. A large clinical trial on postmenopausal women verified the mitigating effects of LithoLexal® Bone on bone resorption and turnover rate. The characteristic composition of LithoLexal® together with its lattice microstructure are suggested to underlie its in vivo bioactivities. In conclusion, adjunctive therapy with LithoLexal® Bone is an attractive option for clinical prevention and treatment of osteopenia/osteoporosis.\",\"PeriodicalId\":36674,\"journal\":{\"name\":\"Clinical Osteology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Osteology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/osteology3010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Osteology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/osteology3010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Disease-Modifying Adjunctive Therapy of Osteopenia and Osteoporosis with a Multimineral Marine Extract, LithoLexal® Bone
There is evidence to suggest that restoration of major/rare biominerals by supplementation can produce osteogenic and anti-resorptive effects in humans. LithoLexal® is a natural extract harvested from a marine alga, Lithothamnion sp., with a porous microstructure and multimolecular composition rich in calcium (32% w/w) and magnesium (2.2% w/w) together with ~72 trace bioelements. In vitro, LithoLexal® demonstrated cellular-level osteogenic efficacy through enhancing the maturation and activity of pre-osteoblasts. This extract also expressed the ability to suppress osteoclastogenesis by downregulating the pro-resorptive cytokines TNF-α and IL-1β and the master regulator of inflammation NF-κB. Parathyroid hormone inhibition of parathyroid hormone secretion is another bioactivity of LithoLexal® Bone reported with both short- and long-term administration at a longer duration and higher magnitude than what calcium carbonate could induce. Due to these bioactivities that affect pathogenetic factors of osteoporosis, LithoLexal® Bone is referred to as a disease-modifying adjunctive therapy (DMAT). In postmenopausal animal models, LithoLexal® monotherapy preserved bone mineral density, microarchitecture, and biomechanical properties, while calcium carbonate failed to produce significant outcomes. The pro-resorptive effect of a high-fat diet was also efficiently counteracted in vivo by supplementary LithoLexal®. A large clinical trial on postmenopausal women verified the mitigating effects of LithoLexal® Bone on bone resorption and turnover rate. The characteristic composition of LithoLexal® together with its lattice microstructure are suggested to underlie its in vivo bioactivities. In conclusion, adjunctive therapy with LithoLexal® Bone is an attractive option for clinical prevention and treatment of osteopenia/osteoporosis.