人工智能中的艰难选择:通过社会技术承诺解决规范不确定性

Roel Dobbe, T. Gilbert, Yonatan Dov Mintz
{"title":"人工智能中的艰难选择:通过社会技术承诺解决规范不确定性","authors":"Roel Dobbe, T. Gilbert, Yonatan Dov Mintz","doi":"10.1145/3375627.3375861","DOIUrl":null,"url":null,"abstract":"The implementation of AI systems has led to new forms of harm in various sensitive social domains. We analyze these as problems How to address these harms remains at the center of controversial debate. In this paper, we discuss the inherent normative uncertainty and political debates surrounding the safety of AI systems.of vagueness to illustrate the shortcomings of current technical approaches in the AI Safety literature, crystallized in three dilemmas that remain in the design, training and deployment of AI systems. We argue that resolving normative uncertainty to render a system 'safe' requires a sociotechnical orientation that combines quantitative and qualitative methods and that assigns design and decision power across affected stakeholders to navigate these dilemmas through distinct channels for dissent. We propose a set of sociotechnical commitments and related virtues to set a bar for declaring an AI system 'human-compatible', implicating broader interdisciplinary design approaches.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hard Choices in Artificial Intelligence: Addressing Normative Uncertainty through Sociotechnical Commitments\",\"authors\":\"Roel Dobbe, T. Gilbert, Yonatan Dov Mintz\",\"doi\":\"10.1145/3375627.3375861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of AI systems has led to new forms of harm in various sensitive social domains. We analyze these as problems How to address these harms remains at the center of controversial debate. In this paper, we discuss the inherent normative uncertainty and political debates surrounding the safety of AI systems.of vagueness to illustrate the shortcomings of current technical approaches in the AI Safety literature, crystallized in three dilemmas that remain in the design, training and deployment of AI systems. We argue that resolving normative uncertainty to render a system 'safe' requires a sociotechnical orientation that combines quantitative and qualitative methods and that assigns design and decision power across affected stakeholders to navigate these dilemmas through distinct channels for dissent. We propose a set of sociotechnical commitments and related virtues to set a bar for declaring an AI system 'human-compatible', implicating broader interdisciplinary design approaches.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

人工智能系统的实施在各种敏感的社会领域导致了新形式的危害。我们分析这些问题,如何解决这些危害仍然是有争议的辩论的中心。在本文中,我们讨论了围绕人工智能系统安全性的固有规范不确定性和政治辩论。在人工智能安全文献中,当前技术方法的缺点是模糊的,具体体现在人工智能系统的设计、培训和部署中仍然存在的三个困境。我们认为,解决规范不确定性以使系统“安全”需要一种结合定量和定性方法的社会技术取向,并在受影响的利益相关者之间分配设计和决策权,以通过不同的异议渠道来应对这些困境。我们提出了一系列社会技术承诺和相关美德,为宣布人工智能系统“与人类兼容”设定了一个标准,这意味着更广泛的跨学科设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hard Choices in Artificial Intelligence: Addressing Normative Uncertainty through Sociotechnical Commitments
The implementation of AI systems has led to new forms of harm in various sensitive social domains. We analyze these as problems How to address these harms remains at the center of controversial debate. In this paper, we discuss the inherent normative uncertainty and political debates surrounding the safety of AI systems.of vagueness to illustrate the shortcomings of current technical approaches in the AI Safety literature, crystallized in three dilemmas that remain in the design, training and deployment of AI systems. We argue that resolving normative uncertainty to render a system 'safe' requires a sociotechnical orientation that combines quantitative and qualitative methods and that assigns design and decision power across affected stakeholders to navigate these dilemmas through distinct channels for dissent. We propose a set of sociotechnical commitments and related virtues to set a bar for declaring an AI system 'human-compatible', implicating broader interdisciplinary design approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bias in Artificial Intelligence Models in Financial Services Privacy Preserving Machine Learning Systems AIES '22: AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021 To Scale: The Universalist and Imperialist Narrative of Big Tech AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1