Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei
{"title":"改进水文预报的混合物理-人工智能模型","authors":"Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei","doi":"10.1175/aies-d-22-0023.1","DOIUrl":null,"url":null,"abstract":"\nThe National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics.\nA densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Physics-AI Model to Improve Hydrological Forecasts\",\"authors\":\"Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei\",\"doi\":\"10.1175/aies-d-22-0023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics.\\nA densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0023.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Physics-AI Model to Improve Hydrological Forecasts
The National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics.
A densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.