改进水文预报的混合物理-人工智能模型

Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei
{"title":"改进水文预报的混合物理-人工智能模型","authors":"Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei","doi":"10.1175/aies-d-22-0023.1","DOIUrl":null,"url":null,"abstract":"\nThe National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics.\nA densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Physics-AI Model to Improve Hydrological Forecasts\",\"authors\":\"Yanan Duan, S. Akula, Sanjiv Kumar, Wonjun Lee, Sepideh Khajehei\",\"doi\":\"10.1175/aies-d-22-0023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics.\\nA densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0023.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国国家海洋和大气管理局利用国家水模型(NWM)开发了一种高分辨率的流量预测系统,预测了美国270万条河流的位置。然而,在未测量位置量化不确定性和预测可靠性方面存在相当大的挑战。提出了一种数据科学方法来应对这一挑战。对阿拉巴马州和佐治亚州2018年12月至2021年8月的长期每日流量预测进行了分析。预测是在389个观测到的USGS流量测量地点使用标准确定性度量进行评估的。其次,利用流域的生物物理特征(包括流域面积、土地利用、土壤类型和地形指数)对预测误差进行分组。NWM对大流域和森林流域的预报比小流域和城市流域的预报更准确。NWM的预报大大高估了城市流域的流量。分类和回归树分析证实了预测误差与生物物理特性的相关性。利用生物物理特征、NWM预测作为输入,预测误差作为输出,建立了一个由6层组成的密集连接神经网络模型(Deep Learning, DL)。深度学习模型成功地从测量位置的域训练中学习到位置不变的可转移知识,并将学习到的模型应用于估计未测量位置的预测误差。测量数据的时空分裂表明,NWM-DL混合模式捕获预测范围内观测值的概率(82±3%)比NWM-DL混合模式(21±1%)显著提高。注意到DL模型中过度约束的NWM预测和增加的预测不确定性范围之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Physics-AI Model to Improve Hydrological Forecasts
The National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics. A densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1