{"title":"用统计计算平台R模拟多元随机正态数据","authors":"Mehmet Türegün","doi":"10.31142/IJTSRD23987","DOIUrl":null,"url":null,"abstract":"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).","PeriodicalId":14446,"journal":{"name":"International Journal of Trend in Scientific Research and Development","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Multivariate Random Normal Data using Statistical Computing Platform R\",\"authors\":\"Mehmet Türegün\",\"doi\":\"10.31142/IJTSRD23987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).\",\"PeriodicalId\":14446,\"journal\":{\"name\":\"International Journal of Trend in Scientific Research and Development\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Trend in Scientific Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31142/IJTSRD23987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Trend in Scientific Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31142/IJTSRD23987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Simulating Multivariate Random Normal Data using Statistical Computing Platform R
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).