用统计计算平台R模拟多元随机正态数据

Mehmet Türegün
{"title":"用统计计算平台R模拟多元随机正态数据","authors":"Mehmet Türegün","doi":"10.31142/IJTSRD23987","DOIUrl":null,"url":null,"abstract":"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).","PeriodicalId":14446,"journal":{"name":"International Journal of Trend in Scientific Research and Development","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Multivariate Random Normal Data using Statistical Computing Platform R\",\"authors\":\"Mehmet Türegün\",\"doi\":\"10.31142/IJTSRD23987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).\",\"PeriodicalId\":14446,\"journal\":{\"name\":\"International Journal of Trend in Scientific Research and Development\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Trend in Scientific Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31142/IJTSRD23987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Trend in Scientific Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31142/IJTSRD23987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

版权所有©2019由作者和《国际科学研究与发展趋势杂志》所有。摘要:在教育研究方法论领域,许多教师和学生有时需要生成用于模拟和计算目的的数据,演示多变量分析技术,或构建学生项目或作业。作为一个很好的教学工具,使用模拟数据可以帮助我们理解统计概念和技术的复杂性。生成多元正态数据的过程是一个重要的过程,没有密集数学的实用指南在文献中是有限的(Nissen和Saft, 2014)。因此,本文的目的是为研究人员提供一个实用的指导和快速获取具有给定均值和方差-协方差结构的多变量随机数据。在统计计算平台R 3.4.4 (R Core Team, 2018)中,给出了使用Eigen(或谱)和Cholesky分解对给定均值和方差协方差矩阵进行多元正态数据模拟的详细概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulating Multivariate Random Normal Data using Statistical Computing Platform R
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Many faculty members, as well as students, in the area of educational research methodology, sometimes have a need for generating data to use for simulation and computation purposes, demonstration of multivariate analysis techniques, or construction of student projects or assignments. As a great teaching tool, using simulated data helps us understand the intricacies of statistical concepts and techniques. The process of generating multivariate normal data is a nontrivial process and practical guides without dense mathematics are limited in the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer researchers a practical guide for and a quick access to generating multivariate random data with a given mean and variance-covariance structure. A detailed outline of simulating multivariate normal data with a given mean and variancecovariance matrix using Eigen (or spectral) and Cholesky decompositions is presented and implemented in statistical computing platform R version 3.4.4 (R Core Team, 2018).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Status of Secondary Sector in Nabarangpur, Odisha Factors Influencing Smallholder Potato Farmers’ Choice Decisions of Market Outlets in Musanze and Nyabihu Districts, Rwanda: A Multivariate Probit MODEL Maintenance and other Operating Expenses (MOOE) and School Based Management (SBM) Performance of Secondary Schools in Samar Island Biogas Production from Decanter Cake of Palm Oil Mill from South India Estimating the Survival Function of HIV/AIDS Patients using Weibull Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1