利用泛函性质进行大解空间模拟的似是而非筛选

Oper. Res. Pub Date : 2022-02-01 DOI:10.1287/opre.2021.2206
David J. Eckman, M. Plumlee, B. Nelson
{"title":"利用泛函性质进行大解空间模拟的似是而非筛选","authors":"David J. Eckman, M. Plumlee, B. Nelson","doi":"10.1287/opre.2021.2206","DOIUrl":null,"url":null,"abstract":"Simulation Solution Screening Using Functional Properties Simulation models today give rise to problems with large numbers of simulated scenarios or solutions—more than can be simulated exhaustively. Fortunately, users of these models may be able to verify or infer properties, such as convexity, of a performance measure of interest when viewed as a function over the space of solutions. In “Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces,” Eckman, Plumlee and Nelson introduce a framework in which such properties are exploited to avoid simulating solutions with unacceptable performances. Their methods solve optimization problems that measure how well the result of a limited simulation experiment agrees with the claim that a solution is acceptable. These methods deliver desirable statistical guarantees of confidence and consistency. Numerical experiments illustrate how functional properties coupled with small simulation experiments can avoid many simulations for simulation-optimization problems.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"45 1","pages":"3473-3489"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces\",\"authors\":\"David J. Eckman, M. Plumlee, B. Nelson\",\"doi\":\"10.1287/opre.2021.2206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation Solution Screening Using Functional Properties Simulation models today give rise to problems with large numbers of simulated scenarios or solutions—more than can be simulated exhaustively. Fortunately, users of these models may be able to verify or infer properties, such as convexity, of a performance measure of interest when viewed as a function over the space of solutions. In “Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces,” Eckman, Plumlee and Nelson introduce a framework in which such properties are exploited to avoid simulating solutions with unacceptable performances. Their methods solve optimization problems that measure how well the result of a limited simulation experiment agrees with the claim that a solution is acceptable. These methods deliver desirable statistical guarantees of confidence and consistency. Numerical experiments illustrate how functional properties coupled with small simulation experiments can avoid many simulations for simulation-optimization problems.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"45 1\",\"pages\":\"3473-3489\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

使用功能属性筛选仿真解决方案今天的仿真模型产生了大量模拟场景或解决方案的问题-比可以模拟详尽。幸运的是,这些模型的用户可能能够验证或推断出感兴趣的性能度量的属性,如凹凸性,当将其视为解决方案空间上的函数时。在《利用功能属性对大解空间进行模拟的合理筛选》一文中,Eckman、Plumlee和Nelson介绍了一个框架,在这个框架中,利用这些属性来避免模拟具有不可接受性能的解。他们的方法解决了优化问题,即衡量有限模拟实验的结果与解决方案可接受性的一致程度。这些方法提供了信心和一致性的理想统计保证。数值实验表明,功能特性与小型模拟实验相结合可以避免模拟优化问题的大量模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces
Simulation Solution Screening Using Functional Properties Simulation models today give rise to problems with large numbers of simulated scenarios or solutions—more than can be simulated exhaustively. Fortunately, users of these models may be able to verify or infer properties, such as convexity, of a performance measure of interest when viewed as a function over the space of solutions. In “Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces,” Eckman, Plumlee and Nelson introduce a framework in which such properties are exploited to avoid simulating solutions with unacceptable performances. Their methods solve optimization problems that measure how well the result of a limited simulation experiment agrees with the claim that a solution is acceptable. These methods deliver desirable statistical guarantees of confidence and consistency. Numerical experiments illustrate how functional properties coupled with small simulation experiments can avoid many simulations for simulation-optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A web-based multi-criteria decision support system for benchmarking marketing decisions alternatives Integrated optimization of wagon flow routing and train formation plan Two-machine decentralized flow shop scheduling problem with inter-factory batch delivery system A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints Meta-frontier: literature review and toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1