{"title":"结构和属性群落检测:复合、集成和选择方法的比较分析","authors":"Haithum Elhadi, G. Agam","doi":"10.1145/2501025.2501034","DOIUrl":null,"url":null,"abstract":"In recent years due to the rise of social, biological, and other rich content graphs, several new graph clustering methods using structure and node's attributes have been introduced. In this paper, we compare our novel clustering method, termed Selection method, against seven clustering methods: three structure and attribute methods, one structure only method, one attribute only method, and two ensemble methods. The Selection method uses the graph structure ambiguity to switch between structure and attribute clustering methods. We shows that the Selection method out performed the state-of-art structure and attribute methods.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"26 1","pages":"10:1-10:7"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Structure and attributes community detection: comparative analysis of composite, ensemble and selection methods\",\"authors\":\"Haithum Elhadi, G. Agam\",\"doi\":\"10.1145/2501025.2501034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years due to the rise of social, biological, and other rich content graphs, several new graph clustering methods using structure and node's attributes have been introduced. In this paper, we compare our novel clustering method, termed Selection method, against seven clustering methods: three structure and attribute methods, one structure only method, one attribute only method, and two ensemble methods. The Selection method uses the graph structure ambiguity to switch between structure and attribute clustering methods. We shows that the Selection method out performed the state-of-art structure and attribute methods.\",\"PeriodicalId\":74521,\"journal\":{\"name\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"volume\":\"26 1\",\"pages\":\"10:1-10:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2501025.2501034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

近年来,由于社会图、生物图和其他内容丰富的图的兴起,引入了几种新的利用结构和节点属性的图聚类方法。在本文中,我们将这种新的聚类方法称为选择方法,与7种聚类方法进行了比较:3种结构和属性聚类方法、1种结构聚类方法、1种属性聚类方法和2种集成聚类方法。选择方法利用图结构模糊度在结构聚类和属性聚类方法之间进行切换。结果表明,选择方法优于当前最先进的结构和属性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure and attributes community detection: comparative analysis of composite, ensemble and selection methods
In recent years due to the rise of social, biological, and other rich content graphs, several new graph clustering methods using structure and node's attributes have been introduced. In this paper, we compare our novel clustering method, termed Selection method, against seven clustering methods: three structure and attribute methods, one structure only method, one attribute only method, and two ensemble methods. The Selection method uses the graph structure ambiguity to switch between structure and attribute clustering methods. We shows that the Selection method out performed the state-of-art structure and attribute methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1