Thea Heusler , Giuliana Bruno , Sander Bekeschus , Jan-Wilm Lackmann , Thomas von Woedtke , Kristian Wende
{"title":"冷物理等离子体衍生氧化剂的作用能否通过巯基氧化来传输?","authors":"Thea Heusler , Giuliana Bruno , Sander Bekeschus , Jan-Wilm Lackmann , Thomas von Woedtke , Kristian Wende","doi":"10.1016/j.cpme.2019.100086","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Intra- and intercellular redox-signaling processes where found responsible in various physiological and pathological processes with cellular thiol groups as important signal transducers. Using cold atmospheric plasma (CAP), a similar oxidation pattern of thiol groups can be achieved. Hence, it must be clarified which role extracellular thiol groups play in mediating CAP effects and whether or not the effects of short-lived reactive species can be preserved in a molecule like cysteine.</p></div><div><h3>Methods</h3><p>Physiological buffer solutions containing the amino acid cysteine were treated by an MHz argon plasma jet with molecular gas admixtures (kINPen) and transferred to cultured human keratinocytes. Cell proliferation, migratory activity, and metabolism were investigated. High-resolution mass spectrometry was used to estimate the impact of plasma generated species on thiol groups.</p></div><div><h3>Results</h3><p>While treated physiologic cysteine concentrations showed no impact on cell behavior, artificially high concentrations decreased proliferation, migration and lactate secretion. GSH levels inside cells were stabilized.</p></div><div><h3>Conclusion</h3><p>Extracellular thiol groups scavenge plasma-generated species and form a multitude of covalent modifications. Unexpectedly, human keratinocytes show only small functional consequences for treated physiologic cysteine concentrations. Results for high concentrated cysteine solutions indicate an improved cytostatic/cytotoxic impact by plasma treatment suggesting a potential application as a “preserving agent” of the chemical energy of plasma-derived species.</p></div>","PeriodicalId":46325,"journal":{"name":"Clinical Plasma Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpme.2019.100086","citationCount":"14","resultStr":"{\"title\":\"Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation?\",\"authors\":\"Thea Heusler , Giuliana Bruno , Sander Bekeschus , Jan-Wilm Lackmann , Thomas von Woedtke , Kristian Wende\",\"doi\":\"10.1016/j.cpme.2019.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Intra- and intercellular redox-signaling processes where found responsible in various physiological and pathological processes with cellular thiol groups as important signal transducers. Using cold atmospheric plasma (CAP), a similar oxidation pattern of thiol groups can be achieved. Hence, it must be clarified which role extracellular thiol groups play in mediating CAP effects and whether or not the effects of short-lived reactive species can be preserved in a molecule like cysteine.</p></div><div><h3>Methods</h3><p>Physiological buffer solutions containing the amino acid cysteine were treated by an MHz argon plasma jet with molecular gas admixtures (kINPen) and transferred to cultured human keratinocytes. Cell proliferation, migratory activity, and metabolism were investigated. High-resolution mass spectrometry was used to estimate the impact of plasma generated species on thiol groups.</p></div><div><h3>Results</h3><p>While treated physiologic cysteine concentrations showed no impact on cell behavior, artificially high concentrations decreased proliferation, migration and lactate secretion. GSH levels inside cells were stabilized.</p></div><div><h3>Conclusion</h3><p>Extracellular thiol groups scavenge plasma-generated species and form a multitude of covalent modifications. Unexpectedly, human keratinocytes show only small functional consequences for treated physiologic cysteine concentrations. Results for high concentrated cysteine solutions indicate an improved cytostatic/cytotoxic impact by plasma treatment suggesting a potential application as a “preserving agent” of the chemical energy of plasma-derived species.</p></div>\",\"PeriodicalId\":46325,\"journal\":{\"name\":\"Clinical Plasma Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cpme.2019.100086\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212816618300258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212816618300258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation?
Purpose
Intra- and intercellular redox-signaling processes where found responsible in various physiological and pathological processes with cellular thiol groups as important signal transducers. Using cold atmospheric plasma (CAP), a similar oxidation pattern of thiol groups can be achieved. Hence, it must be clarified which role extracellular thiol groups play in mediating CAP effects and whether or not the effects of short-lived reactive species can be preserved in a molecule like cysteine.
Methods
Physiological buffer solutions containing the amino acid cysteine were treated by an MHz argon plasma jet with molecular gas admixtures (kINPen) and transferred to cultured human keratinocytes. Cell proliferation, migratory activity, and metabolism were investigated. High-resolution mass spectrometry was used to estimate the impact of plasma generated species on thiol groups.
Results
While treated physiologic cysteine concentrations showed no impact on cell behavior, artificially high concentrations decreased proliferation, migration and lactate secretion. GSH levels inside cells were stabilized.
Conclusion
Extracellular thiol groups scavenge plasma-generated species and form a multitude of covalent modifications. Unexpectedly, human keratinocytes show only small functional consequences for treated physiologic cysteine concentrations. Results for high concentrated cysteine solutions indicate an improved cytostatic/cytotoxic impact by plasma treatment suggesting a potential application as a “preserving agent” of the chemical energy of plasma-derived species.