{"title":"论蛋白质晶体学中单位晶胞参数的准确性。","authors":"Zbigniew Dauter, Alexander Wlodawer","doi":"10.1107/S1399004715015503","DOIUrl":null,"url":null,"abstract":"<p><p>The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen. </p>","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631477/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the accuracy of unit-cell parameters in protein crystallography.\",\"authors\":\"Zbigniew Dauter, Alexander Wlodawer\",\"doi\":\"10.1107/S1399004715015503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen. </p>\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715015503\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715015503","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
On the accuracy of unit-cell parameters in protein crystallography.
The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.