利用清清/陇东双单倍体遗传图谱对水稻抽穗相关基因进行QTL分析

Yoon-Hee Jang, Jae-Ryoung Park, Kyung-Min Kim
{"title":"利用清清/陇东双单倍体遗传图谱对水稻抽穗相关基因进行QTL分析","authors":"Yoon-Hee Jang, Jae-Ryoung Park, Kyung-Min Kim","doi":"10.5352/JLS.2020.30.10.844","DOIUrl":null,"url":null,"abstract":"Disaster-related extreme weather is rapidly increasing due to climate change. In Korea, typhoons accompanied by rainfall usually approach in August and September, causing great damage. The purpose of this study is to find a gene that regulates the heading date of rice in order to avoid loss of harvest from climate change and typhoons. Cheongcheong/Nagdong doubled haploid (CNDH) was used as the plant material to investigate the location of heading-related genes using QTL and sequence analysis by cloning the gene. In the distribution chart, the heading dates, culm lengths, panicle lengths, numbers of panicles, and 1,000-grain weights all have normal distributions. QTL analysis found 13 contigs on chromosome 8. One QTL, named qHd8, was detected on chromosome 8. The range at qHd8 was approximately 7.7 cM, with RM72 and RM404 markers near the peak. There were 13 contigs and 1 ORF. Protein sequence analysis showed that rice was similar to Os08g0341700, AtSFH13, and AtSFH7 proteins. Os08g0341700, which is involved in signal transduction, is similar to phosphatidylinositol transfer-like protein II, and complete information is not available, but it is believed to play a role in the phosphatidylinositol-specific signaling pathway related to Sec14P.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QTL Analysis of Rice Heading-related Genes Using Cheongcheong/Nagdong Doubled Haploid Genetic Map\",\"authors\":\"Yoon-Hee Jang, Jae-Ryoung Park, Kyung-Min Kim\",\"doi\":\"10.5352/JLS.2020.30.10.844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disaster-related extreme weather is rapidly increasing due to climate change. In Korea, typhoons accompanied by rainfall usually approach in August and September, causing great damage. The purpose of this study is to find a gene that regulates the heading date of rice in order to avoid loss of harvest from climate change and typhoons. Cheongcheong/Nagdong doubled haploid (CNDH) was used as the plant material to investigate the location of heading-related genes using QTL and sequence analysis by cloning the gene. In the distribution chart, the heading dates, culm lengths, panicle lengths, numbers of panicles, and 1,000-grain weights all have normal distributions. QTL analysis found 13 contigs on chromosome 8. One QTL, named qHd8, was detected on chromosome 8. The range at qHd8 was approximately 7.7 cM, with RM72 and RM404 markers near the peak. There were 13 contigs and 1 ORF. Protein sequence analysis showed that rice was similar to Os08g0341700, AtSFH13, and AtSFH7 proteins. Os08g0341700, which is involved in signal transduction, is similar to phosphatidylinositol transfer-like protein II, and complete information is not available, but it is believed to play a role in the phosphatidylinositol-specific signaling pathway related to Sec14P.\",\"PeriodicalId\":16322,\"journal\":{\"name\":\"Journal of Life Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Life Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5352/JLS.2020.30.10.844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Life Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5352/JLS.2020.30.10.844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变化,与灾害有关的极端天气正在迅速增加。在韩国,台风通常在8月和9月来临,并伴有降雨,造成很大的损失。本研究的目的是寻找一种调节水稻抽穗日期的基因,以避免气候变化和台风造成的收成损失。以清清/陇东双单倍体(CNDH)为材料,克隆该基因,利用QTL和序列分析对抽头相关基因进行定位。在分布图中,抽穗期、茎长、穗长、穗数、千粒重均呈正态分布。QTL分析发现8号染色体上有13个contigs。在8号染色体上检测到1个QTL,命名为qHd8。qHd8的范围约为7.7 cM, RM72和RM404标记在峰值附近。有13个contigs和1个ORF。蛋白质序列分析显示,水稻与Os08g0341700、AtSFH13和AtSFH7蛋白相似。参与信号转导的Os08g0341700与磷脂酰肌醇转移样蛋白II相似,没有完整的信息,但被认为在与Sec14P相关的磷脂酰肌醇特异性信号通路中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QTL Analysis of Rice Heading-related Genes Using Cheongcheong/Nagdong Doubled Haploid Genetic Map
Disaster-related extreme weather is rapidly increasing due to climate change. In Korea, typhoons accompanied by rainfall usually approach in August and September, causing great damage. The purpose of this study is to find a gene that regulates the heading date of rice in order to avoid loss of harvest from climate change and typhoons. Cheongcheong/Nagdong doubled haploid (CNDH) was used as the plant material to investigate the location of heading-related genes using QTL and sequence analysis by cloning the gene. In the distribution chart, the heading dates, culm lengths, panicle lengths, numbers of panicles, and 1,000-grain weights all have normal distributions. QTL analysis found 13 contigs on chromosome 8. One QTL, named qHd8, was detected on chromosome 8. The range at qHd8 was approximately 7.7 cM, with RM72 and RM404 markers near the peak. There were 13 contigs and 1 ORF. Protein sequence analysis showed that rice was similar to Os08g0341700, AtSFH13, and AtSFH7 proteins. Os08g0341700, which is involved in signal transduction, is similar to phosphatidylinositol transfer-like protein II, and complete information is not available, but it is believed to play a role in the phosphatidylinositol-specific signaling pathway related to Sec14P.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immunomodulatory Effects of Euglena gracilis Extracts NLRP3 Inflammasome in Neuroinflammatory Disorders Anti-inflammatory Activities of Apple Extracts and Phloretin OmpR Is Essential for Growth and Expression of Virulence-related Genes in the Fish Pathogen Edwardsiella piscicida Analysis of Cadaverine and Its Worker Honeybee Venom Content (Apis mellifera L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1