基于OpenGL计算着色器的共轭梯度求解器并行算法

Hongly Va, Do-keyong Lee, M. Hong
{"title":"基于OpenGL计算着色器的共轭梯度求解器并行算法","authors":"Hongly Va, Do-keyong Lee, M. Hong","doi":"10.9708/JKSCI.2021.26.01.001","DOIUrl":null,"url":null,"abstract":"OpenGL compute shader is a shader stage that operate differently from other shader stage and it can be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel algorithm for computing sparse linear systems through conjugate gradient using an iterative method, which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats (Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from our experimental tests using eight sparse matrices shows that GPU-based linear solving system much faster than CPU-based linear solving system with the best average computing time 0.64ms in GPU-based and 15.37ms in CPU-based.","PeriodicalId":17254,"journal":{"name":"Journal of the Korea Society of Computer and Information","volume":"4 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader\",\"authors\":\"Hongly Va, Do-keyong Lee, M. Hong\",\"doi\":\"10.9708/JKSCI.2021.26.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenGL compute shader is a shader stage that operate differently from other shader stage and it can be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel algorithm for computing sparse linear systems through conjugate gradient using an iterative method, which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats (Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from our experimental tests using eight sparse matrices shows that GPU-based linear solving system much faster than CPU-based linear solving system with the best average computing time 0.64ms in GPU-based and 15.37ms in CPU-based.\",\"PeriodicalId\":17254,\"journal\":{\"name\":\"Journal of the Korea Society of Computer and Information\",\"volume\":\"4 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Society of Computer and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9708/JKSCI.2021.26.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Society of Computer and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9708/JKSCI.2021.26.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

OpenGL计算着色器是一个与其他着色器阶段不同的着色器阶段,它可以用于并行计算任何数据。本文提出了一种基于gpu的基于共轭梯度迭代计算稀疏线性系统的并行算法,该算法在OpenGL计算着色器上进行计算。这种稀疏线性求解器主要用于求解大型线性系统,如对称正定矩阵。四种众所周知的矩阵格式(Dense, COO, ELL和CSR)已被用于矩阵存储。通过对8个稀疏矩阵的实验测试进行性能比较,表明基于gpu的线性求解系统比基于cpu的线性求解系统要快得多,其最佳平均计算时间在gpu和cpu上分别为0.64ms和15.37ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader
OpenGL compute shader is a shader stage that operate differently from other shader stage and it can be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel algorithm for computing sparse linear systems through conjugate gradient using an iterative method, which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats (Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from our experimental tests using eight sparse matrices shows that GPU-based linear solving system much faster than CPU-based linear solving system with the best average computing time 0.64ms in GPU-based and 15.37ms in CPU-based.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of the Clinical Competence, Knowledge of Patient Safety Management and Confidence of Patient Safety Management according to Clinical Practice Experience of Nursing Students A study on the impact of host's personalized offline services and platform ease of use on shared homestay consumers' purchase intention Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features Methodology for Search Intent-based Document Recommendation A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1