人工智能在物联网中的力量:基于认知物联网的网络垃圾邮件检测方案

Aaisha Makkar, Neeraj Kumar, M. Guizani
{"title":"人工智能在物联网中的力量:基于认知物联网的网络垃圾邮件检测方案","authors":"Aaisha Makkar, Neeraj Kumar, M. Guizani","doi":"10.1109/SSCI44817.2019.9002885","DOIUrl":null,"url":null,"abstract":"In the modern era, Internet of Things(IoT) plays an important role in connecting the people across the globe. The IoT objects enable the communication and data exchange among each other irrespective of their geographical locations. In such an environment, the Web of Things (WoT) provides the Internet service to the IoT objects. The Internet is mostly accessed by the search engines. The success of search engine depends upon the ranking algorithm. Although, Google is preferred by the maximum Internet users, but still the Google’s ranking algorithm, PageRank experiences the occurrence of spam web pages. In this paper, the webpage filtering algorithm is proposed which automatically detects the spam web pages. The spam webpages are detected before these are processed by the ranking module of search engines. The machine learning model, i.e., decision tree is used for the validation of the proposed scheme. The ten fold cross validation approach is used to improve the accuracy of model, i.e., 98.2%. The results obtained demonstrate that the proposed scheme has the power of preventing the spam web pages in Cognitive Internet of Things (CIoT) environment.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"3132-3138"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Power of AI in IoT : Cognitive IoT-based Scheme for Web Spam Detection\",\"authors\":\"Aaisha Makkar, Neeraj Kumar, M. Guizani\",\"doi\":\"10.1109/SSCI44817.2019.9002885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern era, Internet of Things(IoT) plays an important role in connecting the people across the globe. The IoT objects enable the communication and data exchange among each other irrespective of their geographical locations. In such an environment, the Web of Things (WoT) provides the Internet service to the IoT objects. The Internet is mostly accessed by the search engines. The success of search engine depends upon the ranking algorithm. Although, Google is preferred by the maximum Internet users, but still the Google’s ranking algorithm, PageRank experiences the occurrence of spam web pages. In this paper, the webpage filtering algorithm is proposed which automatically detects the spam web pages. The spam webpages are detected before these are processed by the ranking module of search engines. The machine learning model, i.e., decision tree is used for the validation of the proposed scheme. The ten fold cross validation approach is used to improve the accuracy of model, i.e., 98.2%. The results obtained demonstrate that the proposed scheme has the power of preventing the spam web pages in Cognitive Internet of Things (CIoT) environment.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"3132-3138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在当今时代,物联网(IoT)在连接全球人民方面发挥着重要作用。物联网对象可以实现彼此之间的通信和数据交换,而无需考虑其地理位置。在这种环境下,物联网(WoT)为物联网对象提供互联网服务。互联网主要是通过搜索引擎访问的。搜索引擎的成功与否取决于排名算法。虽然,谷歌是最大网民的首选,但谷歌的排名算法,PageRank经历了垃圾网页的发生。本文提出了一种自动检测垃圾网页的网页过滤算法。垃圾网页在被搜索引擎的排名模块处理之前被检测到。利用机器学习模型,即决策树,对所提出的方案进行验证。采用十重交叉验证方法提高了模型的准确率,达到98.2%。实验结果表明,该方案在认知物联网(CIoT)环境下具有良好的垃圾网页防护能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Power of AI in IoT : Cognitive IoT-based Scheme for Web Spam Detection
In the modern era, Internet of Things(IoT) plays an important role in connecting the people across the globe. The IoT objects enable the communication and data exchange among each other irrespective of their geographical locations. In such an environment, the Web of Things (WoT) provides the Internet service to the IoT objects. The Internet is mostly accessed by the search engines. The success of search engine depends upon the ranking algorithm. Although, Google is preferred by the maximum Internet users, but still the Google’s ranking algorithm, PageRank experiences the occurrence of spam web pages. In this paper, the webpage filtering algorithm is proposed which automatically detects the spam web pages. The spam webpages are detected before these are processed by the ranking module of search engines. The machine learning model, i.e., decision tree is used for the validation of the proposed scheme. The ten fold cross validation approach is used to improve the accuracy of model, i.e., 98.2%. The results obtained demonstrate that the proposed scheme has the power of preventing the spam web pages in Cognitive Internet of Things (CIoT) environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1