利用PANSY和MF雷达获得的南极洲上空中间层回波特征

M. Tsutsumi, Kaoru Sato, Toru Sato, Takuji Nakamura, K. Nishimura, Y. Tomikawa, M. Kohma
{"title":"利用PANSY和MF雷达获得的南极洲上空中间层回波特征","authors":"M. Tsutsumi, Kaoru Sato, Toru Sato, Takuji Nakamura, K. Nishimura, Y. Tomikawa, M. Kohma","doi":"10.2151/SOLA.13A-004","DOIUrl":null,"url":null,"abstract":"We investigated characteristics of mesosphere echoes over Syowa Station (69S) in the Antarctic, which were detected by the Program of the Antarctic Syowa Mesosphere, Stratosphere and Troposphere/Incoherent Scatter (PANSY) radar (47 MHz) and Medium Frequency (MF) radar (2.4 MHz). Winter echoes from the PANSY radar and low altitude MF echoes below approximately 70−75 km mostly coexisted, appearing during the daytime as well as for a few hours post sunset. Summer echoes in the lower height region were absent in both radar observations, suggesting a close relationship in the generation mechanisms of these two radar echoes. High correlation between local K-index and the occurrence of winter echoes suggested that electron density enhancement due to ionized particle precipitation was one of the triggers of echo generation. Angles of arrival of the MF echoes were more isotropic in winter. Because gravity wave activity is much higher in winter over Syowa, higher turbulence energy caused by gravity wave breaking may also be responsible for the generation of the winter echoes and their isotropic behavior. The horizontal wind velocities of the two systems were further compared and agreed well throughout the height region of 60−90 km. (Citation: Tsutsumi, M., K. Sato, T. Sato, M. Kohma, T. Nakamura, K. Nishimura, and Y. Tomikawa, 2017: Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars. SOLA, 13A, 19−23, doi:10.2151/sola.13A-004.)","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars\",\"authors\":\"M. Tsutsumi, Kaoru Sato, Toru Sato, Takuji Nakamura, K. Nishimura, Y. Tomikawa, M. Kohma\",\"doi\":\"10.2151/SOLA.13A-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated characteristics of mesosphere echoes over Syowa Station (69S) in the Antarctic, which were detected by the Program of the Antarctic Syowa Mesosphere, Stratosphere and Troposphere/Incoherent Scatter (PANSY) radar (47 MHz) and Medium Frequency (MF) radar (2.4 MHz). Winter echoes from the PANSY radar and low altitude MF echoes below approximately 70−75 km mostly coexisted, appearing during the daytime as well as for a few hours post sunset. Summer echoes in the lower height region were absent in both radar observations, suggesting a close relationship in the generation mechanisms of these two radar echoes. High correlation between local K-index and the occurrence of winter echoes suggested that electron density enhancement due to ionized particle precipitation was one of the triggers of echo generation. Angles of arrival of the MF echoes were more isotropic in winter. Because gravity wave activity is much higher in winter over Syowa, higher turbulence energy caused by gravity wave breaking may also be responsible for the generation of the winter echoes and their isotropic behavior. The horizontal wind velocities of the two systems were further compared and agreed well throughout the height region of 60−90 km. (Citation: Tsutsumi, M., K. Sato, T. Sato, M. Kohma, T. Nakamura, K. Nishimura, and Y. Tomikawa, 2017: Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars. SOLA, 13A, 19−23, doi:10.2151/sola.13A-004.)\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2151/SOLA.13A-004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2151/SOLA.13A-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用南极Syowa平流层/对流层/非相干散射(PANSY)雷达(47 MHz)和中频(MF)雷达(2.4 MHz)探测的南极Syowa站(69S)上空的中间层回波特征进行了研究。来自PANSY雷达的冬季回波和大约70 ~ 75 km以下的低空中频回波大部分共存,出现在白天以及日落后的几个小时。两次雷达观测均未出现低海拔地区的夏季回波,表明两次雷达回波的产生机制密切相关。局地k指数与冬季回波的高度相关表明,电离粒子沉降导致的电子密度增强是冬季回波产生的触发因素之一。冬季中频回波的到达角呈各向同性。由于冬季Syowa上空的重力波活动要高得多,因此重力波破碎引起的高湍流能量也可能是冬季回波及其各向同性行为的产生原因。进一步比较了两种系统在60 ~ 90 km高度范围内的水平风速,结果吻合较好。(来源:Tsutsumi, M., K. Sato, T. Sato, M. Kohma, T. Nakamura, K. Nishimura和Y. Tomikawa, 2017:使用PANSY和MF雷达获得的南极上空中间层回波特征。太阳能,2013,19−23,doi:10.2151/ solar .13A-004。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars
We investigated characteristics of mesosphere echoes over Syowa Station (69S) in the Antarctic, which were detected by the Program of the Antarctic Syowa Mesosphere, Stratosphere and Troposphere/Incoherent Scatter (PANSY) radar (47 MHz) and Medium Frequency (MF) radar (2.4 MHz). Winter echoes from the PANSY radar and low altitude MF echoes below approximately 70−75 km mostly coexisted, appearing during the daytime as well as for a few hours post sunset. Summer echoes in the lower height region were absent in both radar observations, suggesting a close relationship in the generation mechanisms of these two radar echoes. High correlation between local K-index and the occurrence of winter echoes suggested that electron density enhancement due to ionized particle precipitation was one of the triggers of echo generation. Angles of arrival of the MF echoes were more isotropic in winter. Because gravity wave activity is much higher in winter over Syowa, higher turbulence energy caused by gravity wave breaking may also be responsible for the generation of the winter echoes and their isotropic behavior. The horizontal wind velocities of the two systems were further compared and agreed well throughout the height region of 60−90 km. (Citation: Tsutsumi, M., K. Sato, T. Sato, M. Kohma, T. Nakamura, K. Nishimura, and Y. Tomikawa, 2017: Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars. SOLA, 13A, 19−23, doi:10.2151/sola.13A-004.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1