N. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton J. Smith, R. Katz
{"title":"跨多个公共云选择最佳VM:数据驱动的性能建模方法","authors":"N. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton J. Smith, R. Katz","doi":"10.1145/3127479.3131614","DOIUrl":null,"url":null,"abstract":"Users of cloud services are presented with a bewildering choice of VM types and the choice of VM can have significant implications on performance and cost. In this paper we address the fundamental problem of accurately and economically choosing the best VM for a given workload and user goals. To address the problem of optimal VM selection, we present PARIS, a data-driven system that uses a novel hybrid offline and online data collection and modeling framework to provide accurate performance estimates with minimal data collection. PARIS is able to predict workload performance for different user-specified metrics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers. When compared to sophisticated baselines, including collaborative filtering and a linear interpolation model using measured workload performance on two VM types, PARIS produces significantly better estimates of performance. For instance, it reduces runtime prediction error by a factor of 4 for some workloads on both AWS and Azure. The increased accuracy translates into a 45% reduction in user cost while maintaining performance.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":"{\"title\":\"Selecting the best VM across multiple public clouds: a data-driven performance modeling approach\",\"authors\":\"N. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton J. Smith, R. Katz\",\"doi\":\"10.1145/3127479.3131614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users of cloud services are presented with a bewildering choice of VM types and the choice of VM can have significant implications on performance and cost. In this paper we address the fundamental problem of accurately and economically choosing the best VM for a given workload and user goals. To address the problem of optimal VM selection, we present PARIS, a data-driven system that uses a novel hybrid offline and online data collection and modeling framework to provide accurate performance estimates with minimal data collection. PARIS is able to predict workload performance for different user-specified metrics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers. When compared to sophisticated baselines, including collaborative filtering and a linear interpolation model using measured workload performance on two VM types, PARIS produces significantly better estimates of performance. For instance, it reduces runtime prediction error by a factor of 4 for some workloads on both AWS and Azure. The increased accuracy translates into a 45% reduction in user cost while maintaining performance.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3131614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3131614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selecting the best VM across multiple public clouds: a data-driven performance modeling approach
Users of cloud services are presented with a bewildering choice of VM types and the choice of VM can have significant implications on performance and cost. In this paper we address the fundamental problem of accurately and economically choosing the best VM for a given workload and user goals. To address the problem of optimal VM selection, we present PARIS, a data-driven system that uses a novel hybrid offline and online data collection and modeling framework to provide accurate performance estimates with minimal data collection. PARIS is able to predict workload performance for different user-specified metrics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers. When compared to sophisticated baselines, including collaborative filtering and a linear interpolation model using measured workload performance on two VM types, PARIS produces significantly better estimates of performance. For instance, it reduces runtime prediction error by a factor of 4 for some workloads on both AWS and Azure. The increased accuracy translates into a 45% reduction in user cost while maintaining performance.