更深入地了解权力正常化

Piotr Koniusz, Hongguang Zhang, F. Porikli
{"title":"更深入地了解权力正常化","authors":"Piotr Koniusz, Hongguang Zhang, F. Porikli","doi":"10.1109/CVPR.2018.00605","DOIUrl":null,"url":null,"abstract":"Power Normalizations (PN) are very useful non-linear operators in the context of Bag-of-Words data representations as they tackle problems such as feature imbalance. In this paper, we reconsider these operators in the deep learning setup by introducing a novel layer that implements PN for non-linear pooling of feature maps. Specifically, by using a kernel formulation, our layer combines the feature vectors and their respective spatial locations in the feature maps produced by the last convolutional layer of CNN. Linearization of such a kernel results in a positive definite matrix capturing the second-order statistics of the feature vectors, to which PN operators are applied. We study two types of PN functions, namely (i) MaxExp and (ii) Gamma, addressing their role and meaning in the context of nonlinear pooling. We also provide a probabilistic interpretation of these operators and derive their surrogates with well-behaved gradients for end-to-end CNN learning. We apply our theory to practice by implementing the PN layer on a ResNet-50 model and showcase experiments on four benchmarks for fine-grained recognition, scene recognition, and material classification. Our results demonstrate state-of-the-part performance across all these tasks.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"A Deeper Look at Power Normalizations\",\"authors\":\"Piotr Koniusz, Hongguang Zhang, F. Porikli\",\"doi\":\"10.1109/CVPR.2018.00605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power Normalizations (PN) are very useful non-linear operators in the context of Bag-of-Words data representations as they tackle problems such as feature imbalance. In this paper, we reconsider these operators in the deep learning setup by introducing a novel layer that implements PN for non-linear pooling of feature maps. Specifically, by using a kernel formulation, our layer combines the feature vectors and their respective spatial locations in the feature maps produced by the last convolutional layer of CNN. Linearization of such a kernel results in a positive definite matrix capturing the second-order statistics of the feature vectors, to which PN operators are applied. We study two types of PN functions, namely (i) MaxExp and (ii) Gamma, addressing their role and meaning in the context of nonlinear pooling. We also provide a probabilistic interpretation of these operators and derive their surrogates with well-behaved gradients for end-to-end CNN learning. We apply our theory to practice by implementing the PN layer on a ResNet-50 model and showcase experiments on four benchmarks for fine-grained recognition, scene recognition, and material classification. Our results demonstrate state-of-the-part performance across all these tasks.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

幂规格化(PN)在词袋数据表示中是非常有用的非线性运算符,因为它们可以解决诸如特征不平衡之类的问题。在本文中,我们通过引入一个新的层来重新考虑深度学习设置中的这些算子,该层实现了特征映射的非线性池化的PN。具体来说,通过使用核公式,我们的层结合了CNN最后一个卷积层生成的特征映射中的特征向量及其各自的空间位置。这种核的线性化结果是一个正定矩阵,它捕获了特征向量的二阶统计量,并应用了PN算子。我们研究了两种类型的PN函数,即(i) MaxExp和(ii) Gamma,讨论了它们在非线性池化中的作用和意义。我们还提供了这些算子的概率解释,并推导出具有良好行为梯度的代理,用于端到端CNN学习。我们通过在ResNet-50模型上实现PN层,并在细粒度识别、场景识别和材料分类的四个基准上展示实验,将我们的理论应用于实践。我们的结果展示了跨所有这些任务的部分性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deeper Look at Power Normalizations
Power Normalizations (PN) are very useful non-linear operators in the context of Bag-of-Words data representations as they tackle problems such as feature imbalance. In this paper, we reconsider these operators in the deep learning setup by introducing a novel layer that implements PN for non-linear pooling of feature maps. Specifically, by using a kernel formulation, our layer combines the feature vectors and their respective spatial locations in the feature maps produced by the last convolutional layer of CNN. Linearization of such a kernel results in a positive definite matrix capturing the second-order statistics of the feature vectors, to which PN operators are applied. We study two types of PN functions, namely (i) MaxExp and (ii) Gamma, addressing their role and meaning in the context of nonlinear pooling. We also provide a probabilistic interpretation of these operators and derive their surrogates with well-behaved gradients for end-to-end CNN learning. We apply our theory to practice by implementing the PN layer on a ResNet-50 model and showcase experiments on four benchmarks for fine-grained recognition, scene recognition, and material classification. Our results demonstrate state-of-the-part performance across all these tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1