L3DMC:基于混合曲率空间的终身学习方法

Kaushik Roy, Peyman Moghadam, Mehrtash Harandi
{"title":"L3DMC:基于混合曲率空间的终身学习方法","authors":"Kaushik Roy, Peyman Moghadam, Mehrtash Harandi","doi":"10.48550/arXiv.2307.16459","DOIUrl":null,"url":null,"abstract":"The performance of a lifelong learning (L3) model degrades when it is trained on a series of tasks, as the geometrical formation of the embedding space changes while learning novel concepts sequentially. The majority of existing L3 approaches operate on a fixed-curvature (e.g., zero-curvature Euclidean) space that is not necessarily suitable for modeling the complex geometric structure of data. Furthermore, the distillation strategies apply constraints directly on low-dimensional embeddings, discouraging the L3 model from learning new concepts by making the model highly stable. To address the problem, we propose a distillation strategy named L3DMC that operates on mixed-curvature spaces to preserve the already-learned knowledge by modeling and maintaining complex geometrical structures. We propose to embed the projected low dimensional embedding of fixed-curvature spaces (Euclidean and hyperbolic) to higher-dimensional Reproducing Kernel Hilbert Space (RKHS) using a positive-definite kernel function to attain rich representation. Afterward, we optimize the L3 model by minimizing the discrepancies between the new sample representation and the subspace constructed using the old representation in RKHS. L3DMC is capable of adapting new knowledge better without forgetting old knowledge as it combines the representation power of multiple fixed-curvature spaces and is performed on higher-dimensional RKHS. Thorough experiments on three benchmarks demonstrate the effectiveness of our proposed distillation strategy for medical image classification in L3 settings. Our code implementation is publicly available at https://github.com/csiro-robotics/L3DMC.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"12 1","pages":"123-133"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L3DMC: Lifelong Learning using Distillation via Mixed-Curvature Space\",\"authors\":\"Kaushik Roy, Peyman Moghadam, Mehrtash Harandi\",\"doi\":\"10.48550/arXiv.2307.16459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a lifelong learning (L3) model degrades when it is trained on a series of tasks, as the geometrical formation of the embedding space changes while learning novel concepts sequentially. The majority of existing L3 approaches operate on a fixed-curvature (e.g., zero-curvature Euclidean) space that is not necessarily suitable for modeling the complex geometric structure of data. Furthermore, the distillation strategies apply constraints directly on low-dimensional embeddings, discouraging the L3 model from learning new concepts by making the model highly stable. To address the problem, we propose a distillation strategy named L3DMC that operates on mixed-curvature spaces to preserve the already-learned knowledge by modeling and maintaining complex geometrical structures. We propose to embed the projected low dimensional embedding of fixed-curvature spaces (Euclidean and hyperbolic) to higher-dimensional Reproducing Kernel Hilbert Space (RKHS) using a positive-definite kernel function to attain rich representation. Afterward, we optimize the L3 model by minimizing the discrepancies between the new sample representation and the subspace constructed using the old representation in RKHS. L3DMC is capable of adapting new knowledge better without forgetting old knowledge as it combines the representation power of multiple fixed-curvature spaces and is performed on higher-dimensional RKHS. Thorough experiments on three benchmarks demonstrate the effectiveness of our proposed distillation strategy for medical image classification in L3 settings. Our code implementation is publicly available at https://github.com/csiro-robotics/L3DMC.\",\"PeriodicalId\":18289,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"12 1\",\"pages\":\"123-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.16459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.16459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当终身学习(L3)模型在一系列任务中训练时,其性能会下降,因为在顺序学习新概念时,嵌入空间的几何形状会发生变化。大多数现有的L3方法在固定曲率(例如,零曲率欧几里得)空间上操作,不一定适合对数据的复杂几何结构进行建模。此外,蒸馏策略直接在低维嵌入上应用约束,通过使模型高度稳定来阻止L3模型学习新概念。为了解决这个问题,我们提出了一种名为L3DMC的蒸馏策略,该策略在混合曲率空间上操作,通过建模和维护复杂的几何结构来保留已经学习的知识。我们提出利用正定核函数将固定曲率空间(欧几里德空间和双曲空间)的投影低维嵌入到高维再现核希尔伯特空间(RKHS)中以获得丰富的表示。之后,我们通过最小化新样本表示与RKHS中使用旧表示构建的子空间之间的差异来优化L3模型。L3DMC结合了多个固定曲率空间的表示能力,在高维RKHS上执行,能够更好地适应新知识而不忘记旧知识。在三个基准上进行的深入实验证明了我们提出的蒸馏策略在L3设置下用于医学图像分类的有效性。我们的代码实现可以在https://github.com/csiro-robotics/L3DMC上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L3DMC: Lifelong Learning using Distillation via Mixed-Curvature Space
The performance of a lifelong learning (L3) model degrades when it is trained on a series of tasks, as the geometrical formation of the embedding space changes while learning novel concepts sequentially. The majority of existing L3 approaches operate on a fixed-curvature (e.g., zero-curvature Euclidean) space that is not necessarily suitable for modeling the complex geometric structure of data. Furthermore, the distillation strategies apply constraints directly on low-dimensional embeddings, discouraging the L3 model from learning new concepts by making the model highly stable. To address the problem, we propose a distillation strategy named L3DMC that operates on mixed-curvature spaces to preserve the already-learned knowledge by modeling and maintaining complex geometrical structures. We propose to embed the projected low dimensional embedding of fixed-curvature spaces (Euclidean and hyperbolic) to higher-dimensional Reproducing Kernel Hilbert Space (RKHS) using a positive-definite kernel function to attain rich representation. Afterward, we optimize the L3 model by minimizing the discrepancies between the new sample representation and the subspace constructed using the old representation in RKHS. L3DMC is capable of adapting new knowledge better without forgetting old knowledge as it combines the representation power of multiple fixed-curvature spaces and is performed on higher-dimensional RKHS. Thorough experiments on three benchmarks demonstrate the effectiveness of our proposed distillation strategy for medical image classification in L3 settings. Our code implementation is publicly available at https://github.com/csiro-robotics/L3DMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-Ray Images of Multiple Body Parts Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images Self-Supervised Learning for Endoscopic Video Analysis Exploring Unsupervised Cell Recognition with Prior Self-activation Maps DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1