抗菌肽Buforin II的异种表达和纯化

Boda Ferenc-András, Szabó Zoltán-István, Szőcs Erika, S. Pál, Orbán Csongor, Székely Edit
{"title":"抗菌肽Buforin II的异种表达和纯化","authors":"Boda Ferenc-András, Szabó Zoltán-István, Szőcs Erika, S. Pál, Orbán Csongor, Székely Edit","doi":"10.2478/orvtudert-2019-0010","DOIUrl":null,"url":null,"abstract":"Abstract Antimicrobial peptides are natural substances that have played a role in the development of the adaptive immune system, and are currently involved in the prevention of infections, through their direct antimicrobial and immunomodulatory properties. While the amino acid composition and spatial structure vary, most antibacterial peptides have a positive surface charge, which allows them to bind to the negative bacterial membranes. Buforin II is a widely studied antimicrobial peptide first obtained through the structural modification of buforin I, a peptide isolated from Bufo gargarizans. The peptide showed significant antibacterial activity against Gram-positive and Gram-negative bacterial strains. The mechanism of action of buforin II differs from that of other antimicrobial peptides, as it binds directly to bacterial DNA and RNA. The aim of our study was to obtain recombinant buforin II with a ubiquitin fusion partner, through heterologous expression in Escherichia coli Rosetta™ (DE3)pLysS cells, using a laboratory scale bioreactor. The incubation of expression host cells in a bioreactor allowed the constant monitoring and control of the process parameters, leading to high biomass levels and an increased production rate of the peptide. The parameters used during incubation were: 37°C, pH=6.9 and dissolved oxygen level above 40%. Purification of the recombinant protein was accomplished by affinity chromatography using a Ni-chelate solid phase to which the 10xHistag of our construct showed affinity. Method optimisation consisted in the use of gradient and linear elution, of which the latter was found to be more effective. Digestion of the fusion partner from the target peptide was performed with ubiquitin carboxyl-terminal hydrolase enzyme. The expression and purification protocols developed in our experiment allow the production of a significant amount of buforin II, allowing its use for further research. Furthermore, the presented methods could be suitable for industrial production of the recombinant peptide..","PeriodicalId":9334,"journal":{"name":"Bulletin of Medical Sciences","volume":"5 1","pages":"119 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heterologous Expression and Purification of the Antimicrobial Peptide Buforin II\",\"authors\":\"Boda Ferenc-András, Szabó Zoltán-István, Szőcs Erika, S. Pál, Orbán Csongor, Székely Edit\",\"doi\":\"10.2478/orvtudert-2019-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Antimicrobial peptides are natural substances that have played a role in the development of the adaptive immune system, and are currently involved in the prevention of infections, through their direct antimicrobial and immunomodulatory properties. While the amino acid composition and spatial structure vary, most antibacterial peptides have a positive surface charge, which allows them to bind to the negative bacterial membranes. Buforin II is a widely studied antimicrobial peptide first obtained through the structural modification of buforin I, a peptide isolated from Bufo gargarizans. The peptide showed significant antibacterial activity against Gram-positive and Gram-negative bacterial strains. The mechanism of action of buforin II differs from that of other antimicrobial peptides, as it binds directly to bacterial DNA and RNA. The aim of our study was to obtain recombinant buforin II with a ubiquitin fusion partner, through heterologous expression in Escherichia coli Rosetta™ (DE3)pLysS cells, using a laboratory scale bioreactor. The incubation of expression host cells in a bioreactor allowed the constant monitoring and control of the process parameters, leading to high biomass levels and an increased production rate of the peptide. The parameters used during incubation were: 37°C, pH=6.9 and dissolved oxygen level above 40%. Purification of the recombinant protein was accomplished by affinity chromatography using a Ni-chelate solid phase to which the 10xHistag of our construct showed affinity. Method optimisation consisted in the use of gradient and linear elution, of which the latter was found to be more effective. Digestion of the fusion partner from the target peptide was performed with ubiquitin carboxyl-terminal hydrolase enzyme. The expression and purification protocols developed in our experiment allow the production of a significant amount of buforin II, allowing its use for further research. Furthermore, the presented methods could be suitable for industrial production of the recombinant peptide..\",\"PeriodicalId\":9334,\"journal\":{\"name\":\"Bulletin of Medical Sciences\",\"volume\":\"5 1\",\"pages\":\"119 - 125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/orvtudert-2019-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/orvtudert-2019-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抗菌肽是一种天然物质,在适应性免疫系统的发展中发挥作用,目前通过其直接的抗菌和免疫调节特性参与感染的预防。虽然氨基酸组成和空间结构各不相同,但大多数抗菌肽具有正表面电荷,这使它们能够与负细菌膜结合。Buforin II是一种被广泛研究的抗菌肽,最初是通过对Buforin I进行结构修饰而获得的,Buforin I是一种从Bufo gargarizans中分离出来的肽。该肽对革兰氏阳性和革兰氏阴性菌株均有明显的抑菌活性。buforin II的作用机制不同于其他抗菌肽,因为它直接与细菌DNA和RNA结合。本研究的目的是利用实验室规模的生物反应器,通过在大肠杆菌Rosetta™(DE3)pLysS细胞中异源表达,获得具有泛素融合伙伴的重组丁福林II。在生物反应器中孵育表达宿主细胞,可以对过程参数进行持续监测和控制,从而提高生物量水平和多肽的生产率。孵育过程中使用的参数为:37℃,pH=6.9,溶解氧浓度大于40%。重组蛋白的纯化是通过ni -螯合固相亲和层析完成的,我们构建的10xHistag具有亲和性。方法优化包括使用梯度和线性洗脱,其中后者被发现更有效。用泛素羧基末端水解酶从目标肽中消化融合伙伴。在我们的实验中开发的表达和纯化协议允许生产大量的buforin II,允许其用于进一步的研究。此外,该方法适合于重组肽的工业化生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterologous Expression and Purification of the Antimicrobial Peptide Buforin II
Abstract Antimicrobial peptides are natural substances that have played a role in the development of the adaptive immune system, and are currently involved in the prevention of infections, through their direct antimicrobial and immunomodulatory properties. While the amino acid composition and spatial structure vary, most antibacterial peptides have a positive surface charge, which allows them to bind to the negative bacterial membranes. Buforin II is a widely studied antimicrobial peptide first obtained through the structural modification of buforin I, a peptide isolated from Bufo gargarizans. The peptide showed significant antibacterial activity against Gram-positive and Gram-negative bacterial strains. The mechanism of action of buforin II differs from that of other antimicrobial peptides, as it binds directly to bacterial DNA and RNA. The aim of our study was to obtain recombinant buforin II with a ubiquitin fusion partner, through heterologous expression in Escherichia coli Rosetta™ (DE3)pLysS cells, using a laboratory scale bioreactor. The incubation of expression host cells in a bioreactor allowed the constant monitoring and control of the process parameters, leading to high biomass levels and an increased production rate of the peptide. The parameters used during incubation were: 37°C, pH=6.9 and dissolved oxygen level above 40%. Purification of the recombinant protein was accomplished by affinity chromatography using a Ni-chelate solid phase to which the 10xHistag of our construct showed affinity. Method optimisation consisted in the use of gradient and linear elution, of which the latter was found to be more effective. Digestion of the fusion partner from the target peptide was performed with ubiquitin carboxyl-terminal hydrolase enzyme. The expression and purification protocols developed in our experiment allow the production of a significant amount of buforin II, allowing its use for further research. Furthermore, the presented methods could be suitable for industrial production of the recombinant peptide..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality by design-based method development for the determination of related substances of ezetimibe by high performance liquid chromatography Determination of the sun protection factor of sunscreens Alzheimer’s disease beyond the amyloid accumulation Radioactive background radiation measurement in Mureş county Study of pulmonary complications in patients referred to the intensive care unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1