William Meiniel, P. Spinicelli, E. Angelini, A. Fragola, V. Loriette, F. Orieux, E. Sepúlveda, J. Olivo-Marin
{"title":"使用压缩感知减少快速结构照明显微镜的数据采集","authors":"William Meiniel, P. Spinicelli, E. Angelini, A. Fragola, V. Loriette, F. Orieux, E. Sepúlveda, J. Olivo-Marin","doi":"10.1109/ISBI.2017.7950461","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an original strategy to apply the Compressed Sensing (CS) framework to a super-resolution Structured Illumination Microscopy (SIM) technique. We first define a framework for direct domain CS, that exploits the sparsity of fluorescence microscopy images in the Fourier domain. We then propose an application of this method to a fast 4-images SIM technique, which allows to reconstruct super-resolved fluorescence microscopy images using only 25% of the camera pixels for each acquisition.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"33 1","pages":"32-35"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reducing data acquisition for fast Structured Illumination Microscopy using Compressed Sensing\",\"authors\":\"William Meiniel, P. Spinicelli, E. Angelini, A. Fragola, V. Loriette, F. Orieux, E. Sepúlveda, J. Olivo-Marin\",\"doi\":\"10.1109/ISBI.2017.7950461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an original strategy to apply the Compressed Sensing (CS) framework to a super-resolution Structured Illumination Microscopy (SIM) technique. We first define a framework for direct domain CS, that exploits the sparsity of fluorescence microscopy images in the Fourier domain. We then propose an application of this method to a fast 4-images SIM technique, which allows to reconstruct super-resolved fluorescence microscopy images using only 25% of the camera pixels for each acquisition.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"33 1\",\"pages\":\"32-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing data acquisition for fast Structured Illumination Microscopy using Compressed Sensing
In this work, we introduce an original strategy to apply the Compressed Sensing (CS) framework to a super-resolution Structured Illumination Microscopy (SIM) technique. We first define a framework for direct domain CS, that exploits the sparsity of fluorescence microscopy images in the Fourier domain. We then propose an application of this method to a fast 4-images SIM technique, which allows to reconstruct super-resolved fluorescence microscopy images using only 25% of the camera pixels for each acquisition.