用于非线性系统辨识的深度递归神经网络

Max Schüssler, T. Münker, O. Nelles
{"title":"用于非线性系统辨识的深度递归神经网络","authors":"Max Schüssler, T. Münker, O. Nelles","doi":"10.1109/SSCI44817.2019.9003133","DOIUrl":null,"url":null,"abstract":"Deep recurrent neural networks are used as a means for nonlinear system identification. It is shown that state space models can be transformed into recurrent neural networks and vice versa. This transformation and the understanding of the long short-term memory cell in terms of common system identification nomenclature makes the advances in deep learning more accessible to the controls and system identification communities. A systematic study of deep recurrent neural networks is carried out on a state-of-the-art system identification benchmark. The results indicate that if high amounts of data are available, standard recurrent neural networks achieve comparable performance to state-of-the-art system identification methods.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"448-454"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Recurrent Neural Networks for Nonlinear System Identification\",\"authors\":\"Max Schüssler, T. Münker, O. Nelles\",\"doi\":\"10.1109/SSCI44817.2019.9003133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep recurrent neural networks are used as a means for nonlinear system identification. It is shown that state space models can be transformed into recurrent neural networks and vice versa. This transformation and the understanding of the long short-term memory cell in terms of common system identification nomenclature makes the advances in deep learning more accessible to the controls and system identification communities. A systematic study of deep recurrent neural networks is carried out on a state-of-the-art system identification benchmark. The results indicate that if high amounts of data are available, standard recurrent neural networks achieve comparable performance to state-of-the-art system identification methods.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"448-454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用深度递归神经网络作为非线性系统辨识的手段。结果表明,状态空间模型可以转化为递归神经网络,反之亦然。这种转换和对长短期记忆细胞在通用系统识别术语方面的理解使得深度学习的进步更容易被控制和系统识别社区所接受。在最先进的系统识别基准上对深度递归神经网络进行了系统研究。结果表明,如果有大量的可用数据,标准的递归神经网络可以达到与最先进的系统识别方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Recurrent Neural Networks for Nonlinear System Identification
Deep recurrent neural networks are used as a means for nonlinear system identification. It is shown that state space models can be transformed into recurrent neural networks and vice versa. This transformation and the understanding of the long short-term memory cell in terms of common system identification nomenclature makes the advances in deep learning more accessible to the controls and system identification communities. A systematic study of deep recurrent neural networks is carried out on a state-of-the-art system identification benchmark. The results indicate that if high amounts of data are available, standard recurrent neural networks achieve comparable performance to state-of-the-art system identification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1