楼板振动设计中人体行走激励动载荷因子的研究进展

H. Nguyen, N. Lythgo, E. Gad, John Wilson, N. Haritos
{"title":"楼板振动设计中人体行走激励动载荷因子的研究进展","authors":"H. Nguyen, N. Lythgo, E. Gad, John Wilson, N. Haritos","doi":"10.2478/ijame-2022-0038","DOIUrl":null,"url":null,"abstract":"Abstract This paper discusses the derivation of a set of dynamic load factors for calculation of walking response on the basis of measurements made during a biomechanics research carried out with young adults. Firstly, a quite large number of experimental data on single footstep force were collected. The single footstep forces were then superimposed to generate the force time history for a continuous walk. This was followed by the transformation of the resultant force to the frequency domain from which the dynamic load factors for the first ten harmonics of a pacing rate can be extracted. A statistical analysis was employed on the dynamic load factors to acquire their design values in terms of the 90-th or 95-th percentile. The waking force function recommended by various design guides and that developed in the paper were then used in a comprehensive finite element model to predict the vibration level of a building floor. Current design guides on floor vibration normally suggest using four harmonics in the walking force whereas load factors for ten harmonics were developed in this paper. The acceleration response of the floor was found to increase by 5-33% when walking harmonics beyond the fourth harmonic were considered. The inclusion of higher harmonics would therefore lead to a more conservative estimation of the floor response.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"49 1","pages":"103 - 114"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Dynamic Load Factors for Human Walking Excitation for Floor Vibration Design\",\"authors\":\"H. Nguyen, N. Lythgo, E. Gad, John Wilson, N. Haritos\",\"doi\":\"10.2478/ijame-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper discusses the derivation of a set of dynamic load factors for calculation of walking response on the basis of measurements made during a biomechanics research carried out with young adults. Firstly, a quite large number of experimental data on single footstep force were collected. The single footstep forces were then superimposed to generate the force time history for a continuous walk. This was followed by the transformation of the resultant force to the frequency domain from which the dynamic load factors for the first ten harmonics of a pacing rate can be extracted. A statistical analysis was employed on the dynamic load factors to acquire their design values in terms of the 90-th or 95-th percentile. The waking force function recommended by various design guides and that developed in the paper were then used in a comprehensive finite element model to predict the vibration level of a building floor. Current design guides on floor vibration normally suggest using four harmonics in the walking force whereas load factors for ten harmonics were developed in this paper. The acceleration response of the floor was found to increase by 5-33% when walking harmonics beyond the fourth harmonic were considered. The inclusion of higher harmonics would therefore lead to a more conservative estimation of the floor response.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"49 1\",\"pages\":\"103 - 114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2

摘要

摘要:本文讨论了一组动态负载因子的推导,用于计算步行响应的基础上,测量进行了对年轻人的生物力学研究。首先,收集了大量的单足力实验数据。然后将单步力叠加以生成连续行走的力时程。然后将合力转换为频域,从中可以提取出起搏速率的前十个谐波的动态负载因子。对动载系数进行统计分析,得到其在第90或95百分位的设计值。然后将各种设计指南推荐的唤醒力函数和本文开发的唤醒力函数用于综合有限元模型中,以预测建筑物楼层的振动水平。目前的地板振动设计指南通常建议在行走力中使用四次谐波,而本文开发了十次谐波的负载系数。当考虑四次谐波以外的步行谐波时,地板的加速度响应增加了5-33%。因此,包含高次谐波将导致对底板响应的更保守的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Dynamic Load Factors for Human Walking Excitation for Floor Vibration Design
Abstract This paper discusses the derivation of a set of dynamic load factors for calculation of walking response on the basis of measurements made during a biomechanics research carried out with young adults. Firstly, a quite large number of experimental data on single footstep force were collected. The single footstep forces were then superimposed to generate the force time history for a continuous walk. This was followed by the transformation of the resultant force to the frequency domain from which the dynamic load factors for the first ten harmonics of a pacing rate can be extracted. A statistical analysis was employed on the dynamic load factors to acquire their design values in terms of the 90-th or 95-th percentile. The waking force function recommended by various design guides and that developed in the paper were then used in a comprehensive finite element model to predict the vibration level of a building floor. Current design guides on floor vibration normally suggest using four harmonics in the walking force whereas load factors for ten harmonics were developed in this paper. The acceleration response of the floor was found to increase by 5-33% when walking harmonics beyond the fourth harmonic were considered. The inclusion of higher harmonics would therefore lead to a more conservative estimation of the floor response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1