Avinash Karanth Kodi, R. Morris, D. DiTomaso, Ashwini Sarathy, A. Louri
{"title":"noc架构中通道缓冲和跨栏组织的协同设计","authors":"Avinash Karanth Kodi, R. Morris, D. DiTomaso, Ashwini Sarathy, A. Louri","doi":"10.1109/ICCAD.2011.6105329","DOIUrl":null,"url":null,"abstract":"Network-on-Chips (NoCs) have emerged as a scalable solution to the wire delay constraints, thereby providing a high-performance communication fabric for future multicores. Research has shown that power, area and performance of Network-on-Chips (NoCs) architecture are tightly integrated with the design and optimization of the link and router (buffer and crossbar). Recent work has shown that adaptive channel buffers (on-link storage) can considerably reduce power consumption and area overhead by reducing or replacing the power hungry router buffers. However, channel buffer design can lead to Head-of-Line (HoL) blocking which eventually reduces the throughput of the network. In this paper, we explore the design space of organizing channel buffers and router crossbars to improve the performance (latency, throughput) while reducing the power consumption. Our proposed designs analyze the power-performance-area trade-off in designing channel buffers for NoC architectures while overcoming HoL blocking through crossbar optimizations. Our simulation and NoC design synthesis shows that for a 8 × 8 mesh architecture, we can reduce the power consumption by 25–40%, improve performance by 10–25% while occupying 4–13% more area when compared to the baseline architecture.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"43 1","pages":"219-226"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Co-design of channel buffers and crossbar organizations in NoCs architectures\",\"authors\":\"Avinash Karanth Kodi, R. Morris, D. DiTomaso, Ashwini Sarathy, A. Louri\",\"doi\":\"10.1109/ICCAD.2011.6105329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-Chips (NoCs) have emerged as a scalable solution to the wire delay constraints, thereby providing a high-performance communication fabric for future multicores. Research has shown that power, area and performance of Network-on-Chips (NoCs) architecture are tightly integrated with the design and optimization of the link and router (buffer and crossbar). Recent work has shown that adaptive channel buffers (on-link storage) can considerably reduce power consumption and area overhead by reducing or replacing the power hungry router buffers. However, channel buffer design can lead to Head-of-Line (HoL) blocking which eventually reduces the throughput of the network. In this paper, we explore the design space of organizing channel buffers and router crossbars to improve the performance (latency, throughput) while reducing the power consumption. Our proposed designs analyze the power-performance-area trade-off in designing channel buffers for NoC architectures while overcoming HoL blocking through crossbar optimizations. Our simulation and NoC design synthesis shows that for a 8 × 8 mesh architecture, we can reduce the power consumption by 25–40%, improve performance by 10–25% while occupying 4–13% more area when compared to the baseline architecture.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"43 1\",\"pages\":\"219-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-design of channel buffers and crossbar organizations in NoCs architectures
Network-on-Chips (NoCs) have emerged as a scalable solution to the wire delay constraints, thereby providing a high-performance communication fabric for future multicores. Research has shown that power, area and performance of Network-on-Chips (NoCs) architecture are tightly integrated with the design and optimization of the link and router (buffer and crossbar). Recent work has shown that adaptive channel buffers (on-link storage) can considerably reduce power consumption and area overhead by reducing or replacing the power hungry router buffers. However, channel buffer design can lead to Head-of-Line (HoL) blocking which eventually reduces the throughput of the network. In this paper, we explore the design space of organizing channel buffers and router crossbars to improve the performance (latency, throughput) while reducing the power consumption. Our proposed designs analyze the power-performance-area trade-off in designing channel buffers for NoC architectures while overcoming HoL blocking through crossbar optimizations. Our simulation and NoC design synthesis shows that for a 8 × 8 mesh architecture, we can reduce the power consumption by 25–40%, improve performance by 10–25% while occupying 4–13% more area when compared to the baseline architecture.