基于最大分类器差异和知识蒸馏的多设备声场景鲁棒分类

Saori Takeyama, Tatsuya Komatsu, Koichi Miyazaki, M. Togami, Shunsuke Ono
{"title":"基于最大分类器差异和知识蒸馏的多设备声场景鲁棒分类","authors":"Saori Takeyama, Tatsuya Komatsu, Koichi Miyazaki, M. Togami, Shunsuke Ono","doi":"10.23919/Eusipco47968.2020.9287734","DOIUrl":null,"url":null,"abstract":"This paper proposes robust acoustic scene classification (ASC) to multiple devices using maximum classifier discrepancy (MCD) and knowledge distillation (KD). The proposed method employs domain adaptation to train multiple ASC models dedicated to each device and combines these multiple device-specific models using a KD technique into a multi-domain ASC model. For domain adaptation, the proposed method utilizes MCD to align class distributions that conventional DA for ASC methods have ignored. The multi-device robust ASC model is obtained by KD, combining the multiple device-specific ASC models by MCD that may have a lower performance for non-target devices. Our experiments show that the proposed MCD-based device-specific model improved ASC accuracy by at most 12.22% for target samples, and the proposed KD-based device-general model improved ASC accuracy by 2.13% on average for all devices.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"14 1","pages":"36-40"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Robust Acoustic Scene Classification to Multiple Devices Using Maximum Classifier Discrepancy and Knowledge Distillation\",\"authors\":\"Saori Takeyama, Tatsuya Komatsu, Koichi Miyazaki, M. Togami, Shunsuke Ono\",\"doi\":\"10.23919/Eusipco47968.2020.9287734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes robust acoustic scene classification (ASC) to multiple devices using maximum classifier discrepancy (MCD) and knowledge distillation (KD). The proposed method employs domain adaptation to train multiple ASC models dedicated to each device and combines these multiple device-specific models using a KD technique into a multi-domain ASC model. For domain adaptation, the proposed method utilizes MCD to align class distributions that conventional DA for ASC methods have ignored. The multi-device robust ASC model is obtained by KD, combining the multiple device-specific ASC models by MCD that may have a lower performance for non-target devices. Our experiments show that the proposed MCD-based device-specific model improved ASC accuracy by at most 12.22% for target samples, and the proposed KD-based device-general model improved ASC accuracy by 2.13% on average for all devices.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"14 1\",\"pages\":\"36-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于最大分类器差异(MCD)和知识蒸馏(KD),提出了多设备的鲁棒声场景分类方法。该方法采用域自适应的方法来训练多个专用于每个设备的ASC模型,并使用KD技术将这些多个特定于设备的模型组合成一个多域ASC模型。在领域自适应方面,本文提出的方法利用MCD来对齐类分布,这是传统的用于ASC的DA方法所忽略的。多设备鲁棒ASC模型是通过KD获得的,结合MCD的多设备特定ASC模型,这些模型对于非目标设备可能具有较低的性能。我们的实验表明,所提出的基于mcd的设备特定模型对目标样本的ASC精度提高了最多12.22%,而所提出的基于kd的设备通用模型对所有设备的ASC精度平均提高了2.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Acoustic Scene Classification to Multiple Devices Using Maximum Classifier Discrepancy and Knowledge Distillation
This paper proposes robust acoustic scene classification (ASC) to multiple devices using maximum classifier discrepancy (MCD) and knowledge distillation (KD). The proposed method employs domain adaptation to train multiple ASC models dedicated to each device and combines these multiple device-specific models using a KD technique into a multi-domain ASC model. For domain adaptation, the proposed method utilizes MCD to align class distributions that conventional DA for ASC methods have ignored. The multi-device robust ASC model is obtained by KD, combining the multiple device-specific ASC models by MCD that may have a lower performance for non-target devices. Our experiments show that the proposed MCD-based device-specific model improved ASC accuracy by at most 12.22% for target samples, and the proposed KD-based device-general model improved ASC accuracy by 2.13% on average for all devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1