{"title":"运行时支持多核Haskell","authors":"S. Marlow, S. Jones, Satnam Singh","doi":"10.1145/1596550.1596563","DOIUrl":null,"url":null,"abstract":"Purely functional programs should run well on parallel hardware because of the absence of side effects, but it has proved hard to realise this potential in practice. Plenty of papers describe promising ideas, but vastly fewer describe real implementations with good wall-clock performance. We describe just such an implementation, and quantitatively explore some of the complex design tradeoffs that make such implementations hard to build. Our measurements are necessarily detailed and specific, but they are reproducible, and we believe that they offer some general insights.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":"65-78"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"Runtime support for multicore Haskell\",\"authors\":\"S. Marlow, S. Jones, Satnam Singh\",\"doi\":\"10.1145/1596550.1596563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purely functional programs should run well on parallel hardware because of the absence of side effects, but it has proved hard to realise this potential in practice. Plenty of papers describe promising ideas, but vastly fewer describe real implementations with good wall-clock performance. We describe just such an implementation, and quantitatively explore some of the complex design tradeoffs that make such implementations hard to build. Our measurements are necessarily detailed and specific, but they are reproducible, and we believe that they offer some general insights.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"1 1\",\"pages\":\"65-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1596550.1596563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596550.1596563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purely functional programs should run well on parallel hardware because of the absence of side effects, but it has proved hard to realise this potential in practice. Plenty of papers describe promising ideas, but vastly fewer describe real implementations with good wall-clock performance. We describe just such an implementation, and quantitatively explore some of the complex design tradeoffs that make such implementations hard to build. Our measurements are necessarily detailed and specific, but they are reproducible, and we believe that they offer some general insights.