稀疏先验变分贝叶斯矩阵分解的近似方法

Ryota Kawasumi, K. Takeda
{"title":"稀疏先验变分贝叶斯矩阵分解的近似方法","authors":"Ryota Kawasumi, K. Takeda","doi":"10.1109/MLSP.2017.8168156","DOIUrl":null,"url":null,"abstract":"We study the problem of matrix factorization by variational Bayes method, under the assumption that observed matrix is the product of low-rank dense and sparse matrices with additional noise. Under assumption of Laplace distribution for sparse matrix prior, we analytically derive an approximate solution of matrix factorization by minimizing Kullback-Leibler divergence between posterior and trial function. By evaluating our solution numerically, we also discuss accuracy of matrix factorization of our analytical solution.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"18 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate method of variational Bayesian matrix factorization with sparse prior\",\"authors\":\"Ryota Kawasumi, K. Takeda\",\"doi\":\"10.1109/MLSP.2017.8168156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of matrix factorization by variational Bayes method, under the assumption that observed matrix is the product of low-rank dense and sparse matrices with additional noise. Under assumption of Laplace distribution for sparse matrix prior, we analytically derive an approximate solution of matrix factorization by minimizing Kullback-Leibler divergence between posterior and trial function. By evaluating our solution numerically, we also discuss accuracy of matrix factorization of our analytical solution.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"18 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了变分贝叶斯方法的矩阵分解问题,假设观测矩阵是低秩密集矩阵和稀疏矩阵的乘积,并附加了噪声。在稀疏矩阵先验的拉普拉斯分布假设下,通过最小化后验函数与试验函数之间的Kullback-Leibler散度,解析导出了矩阵分解的近似解。通过数值计算,讨论了解析解的矩阵分解精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate method of variational Bayesian matrix factorization with sparse prior
We study the problem of matrix factorization by variational Bayes method, under the assumption that observed matrix is the product of low-rank dense and sparse matrices with additional noise. Under assumption of Laplace distribution for sparse matrix prior, we analytically derive an approximate solution of matrix factorization by minimizing Kullback-Leibler divergence between posterior and trial function. By evaluating our solution numerically, we also discuss accuracy of matrix factorization of our analytical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1