{"title":"周期脉冲反应堆的冷却系统","authors":"V. Gribacheva, S. Shcherbakov","doi":"10.55176/2414-1038-2021-2-256-267","DOIUrl":null,"url":null,"abstract":"The paper proposes the configuration and composition equipment of the cooling system of the designed periodic pulsed reactor (PPR) of high power. The special features of the PPR are a small flow section, a large heating of the coolant in the power pulse and the impossibility of useful use of thermal energy in the periodic mode of operation. Liquid lithium is proposed as a coolant and heat is discharged through air heat exchangers (AHE). The goal was to achieve compactness and low power consumption, the ability to work with frequent stops and optimize the operation of equipment in pulse modes. For this purpose, high-temperature AHE with a small heat exchange surface and forced air cooling are used, the circulation circuit is divided into two parts - the reactor circuit and the AHE circuit with two circulation pumps and a common drain tank. The separation of the circuit allows to independently perform the operations of starting, stopping and heating the circuits in a periodic mode. The drain tank limits the composition of the equipment exposed to temperature pulses. Numerical studies of the temperature regime of the coolant in the equipment of the PDR cooling system are carried out. The calculations were performed using the TURBOFLOW code in two-dimensional terms for all the main elements of the equipment. Quasi-stationary (nominal and partial power levels) and pulse modes of operation are considered. Calculated characteristics for forced and natural air circulation are obtained. The limits of the air circulation modes under the conditions of non-freezing of the coolant are determined. The obtained values of the maximum temperatures of the coolant: in the pulsed mode is 750 °C, in the quasi-stationary mode - 490 °C with an average power of 15 MW, air flow of 150 m3/s and the size of the AHE in the plan of 5×5 m, 100 panels of 1.08×0.025×5 m.","PeriodicalId":20426,"journal":{"name":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE COOLING SYSTEM OF THE PERIODIC PULSED REACTOR\",\"authors\":\"V. Gribacheva, S. Shcherbakov\",\"doi\":\"10.55176/2414-1038-2021-2-256-267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes the configuration and composition equipment of the cooling system of the designed periodic pulsed reactor (PPR) of high power. The special features of the PPR are a small flow section, a large heating of the coolant in the power pulse and the impossibility of useful use of thermal energy in the periodic mode of operation. Liquid lithium is proposed as a coolant and heat is discharged through air heat exchangers (AHE). The goal was to achieve compactness and low power consumption, the ability to work with frequent stops and optimize the operation of equipment in pulse modes. For this purpose, high-temperature AHE with a small heat exchange surface and forced air cooling are used, the circulation circuit is divided into two parts - the reactor circuit and the AHE circuit with two circulation pumps and a common drain tank. The separation of the circuit allows to independently perform the operations of starting, stopping and heating the circuits in a periodic mode. The drain tank limits the composition of the equipment exposed to temperature pulses. Numerical studies of the temperature regime of the coolant in the equipment of the PDR cooling system are carried out. The calculations were performed using the TURBOFLOW code in two-dimensional terms for all the main elements of the equipment. Quasi-stationary (nominal and partial power levels) and pulse modes of operation are considered. Calculated characteristics for forced and natural air circulation are obtained. The limits of the air circulation modes under the conditions of non-freezing of the coolant are determined. The obtained values of the maximum temperatures of the coolant: in the pulsed mode is 750 °C, in the quasi-stationary mode - 490 °C with an average power of 15 MW, air flow of 150 m3/s and the size of the AHE in the plan of 5×5 m, 100 panels of 1.08×0.025×5 m.\",\"PeriodicalId\":20426,\"journal\":{\"name\":\"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55176/2414-1038-2021-2-256-267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55176/2414-1038-2021-2-256-267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
介绍了所设计的大功率周期脉冲堆(PPR)冷却系统的结构和组成设备。PPR的特点是流量小,在功率脉冲中冷却剂的热量大,并且在周期性运行模式下不可能有效地利用热能。液态锂作为冷却剂,热量通过空气热交换器(AHE)排出。目标是实现紧凑性和低功耗,能够频繁停止工作,并优化脉冲模式下设备的操作。为此,采用换热面小、强制风冷的高温AHE,循环回路分为反应器回路和AHE回路两部分,由两台循环泵和一个公共排水槽组成。电路的分离允许以周期性模式独立执行启动,停止和加热电路的操作。排液槽限制了暴露在温度脉冲下的设备的组成。对PDR冷却系统中冷却剂的温度状态进行了数值研究。使用TURBOFLOW代码对设备的所有主要部件进行二维计算。准平稳(标称和部分功率电平)和脉冲工作模式被考虑。得到了强制空气循环和自然空气循环的计算特性。确定了冷却剂不冻结条件下空气循环方式的极限。得到的冷却剂最高温度值:脉冲模式下为750℃,准平稳模式下为- 490℃,平均功率为15 MW,风量为150 m3/s, AHE尺寸为5×5 m, 100块面板为1.08×0.025×5 m。
The paper proposes the configuration and composition equipment of the cooling system of the designed periodic pulsed reactor (PPR) of high power. The special features of the PPR are a small flow section, a large heating of the coolant in the power pulse and the impossibility of useful use of thermal energy in the periodic mode of operation. Liquid lithium is proposed as a coolant and heat is discharged through air heat exchangers (AHE). The goal was to achieve compactness and low power consumption, the ability to work with frequent stops and optimize the operation of equipment in pulse modes. For this purpose, high-temperature AHE with a small heat exchange surface and forced air cooling are used, the circulation circuit is divided into two parts - the reactor circuit and the AHE circuit with two circulation pumps and a common drain tank. The separation of the circuit allows to independently perform the operations of starting, stopping and heating the circuits in a periodic mode. The drain tank limits the composition of the equipment exposed to temperature pulses. Numerical studies of the temperature regime of the coolant in the equipment of the PDR cooling system are carried out. The calculations were performed using the TURBOFLOW code in two-dimensional terms for all the main elements of the equipment. Quasi-stationary (nominal and partial power levels) and pulse modes of operation are considered. Calculated characteristics for forced and natural air circulation are obtained. The limits of the air circulation modes under the conditions of non-freezing of the coolant are determined. The obtained values of the maximum temperatures of the coolant: in the pulsed mode is 750 °C, in the quasi-stationary mode - 490 °C with an average power of 15 MW, air flow of 150 m3/s and the size of the AHE in the plan of 5×5 m, 100 panels of 1.08×0.025×5 m.