{"title":"基于LSTM网络的移动机器人运动传感器时间序列预测","authors":"Anete Vagale, Luīze Šteina, Valters Vecins","doi":"10.2478/acss-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"2 1","pages":"150 - 157"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks\",\"authors\":\"Anete Vagale, Luīze Šteina, Valters Vecins\",\"doi\":\"10.2478/acss-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"2 1\",\"pages\":\"150 - 157\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks
Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.