利用外部先验知识识别数字图书馆的权威研究人员

Baptiste de La Robertie, Y. Pitarch, A. Takasu, O. Teste
{"title":"利用外部先验知识识别数字图书馆的权威研究人员","authors":"Baptiste de La Robertie, Y. Pitarch, A. Takasu, O. Teste","doi":"10.1145/3019612.3019809","DOIUrl":null,"url":null,"abstract":"Numereous digital library projects mine heterogeneous data from different sources to provide expert finding services. However, a variety of models seek experts as simple sources of information and neglect authority signals. In this paper we address the issue of modelling the authority of researchers in academic networks. A model, RAC, is proposed that merges several graph representations and incorporate external knowledge about the authority of some major scientific conferences to improve the identification of authoritative researchers. Based on the provided structural model a biased label propagation algorithm aimed to strenghten the scores calculation of the labelled entities and their neighbors is developped. Both quantitative and qualitative analyses validate the effectiveness of the proposal. Indeed, RAC outperforms state-of-the-art models on a real-world graph containing more than 5 million nodes constructed using Microsoft Academic Search, AMiner and Core.edu databases.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying authoritative researchers in digital libraries using external a priori knowledge\",\"authors\":\"Baptiste de La Robertie, Y. Pitarch, A. Takasu, O. Teste\",\"doi\":\"10.1145/3019612.3019809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numereous digital library projects mine heterogeneous data from different sources to provide expert finding services. However, a variety of models seek experts as simple sources of information and neglect authority signals. In this paper we address the issue of modelling the authority of researchers in academic networks. A model, RAC, is proposed that merges several graph representations and incorporate external knowledge about the authority of some major scientific conferences to improve the identification of authoritative researchers. Based on the provided structural model a biased label propagation algorithm aimed to strenghten the scores calculation of the labelled entities and their neighbors is developped. Both quantitative and qualitative analyses validate the effectiveness of the proposal. Indeed, RAC outperforms state-of-the-art models on a real-world graph containing more than 5 million nodes constructed using Microsoft Academic Search, AMiner and Core.edu databases.\",\"PeriodicalId\":20728,\"journal\":{\"name\":\"Proceedings of the Symposium on Applied Computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3019612.3019809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众多数字图书馆项目从不同来源挖掘异构数据,提供专家查找服务。然而,各种各样的模型寻求专家作为简单的信息来源,而忽视权威信号。在本文中,我们讨论了学术网络中研究人员权威的建模问题。为了提高对权威研究者的识别,提出了一个RAC模型,该模型合并了多个图表示,并纳入了一些重要科学会议权威的外部知识。基于所提供的结构模型,提出了一种偏向标签传播算法,以加强标签实体及其相邻实体的分数计算。定量和定性分析验证了该方案的有效性。事实上,RAC在使用Microsoft Academic Search、AMiner和Core.edu数据库构建的包含500多万个节点的真实世界图上的表现优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying authoritative researchers in digital libraries using external a priori knowledge
Numereous digital library projects mine heterogeneous data from different sources to provide expert finding services. However, a variety of models seek experts as simple sources of information and neglect authority signals. In this paper we address the issue of modelling the authority of researchers in academic networks. A model, RAC, is proposed that merges several graph representations and incorporate external knowledge about the authority of some major scientific conferences to improve the identification of authoritative researchers. Based on the provided structural model a biased label propagation algorithm aimed to strenghten the scores calculation of the labelled entities and their neighbors is developped. Both quantitative and qualitative analyses validate the effectiveness of the proposal. Indeed, RAC outperforms state-of-the-art models on a real-world graph containing more than 5 million nodes constructed using Microsoft Academic Search, AMiner and Core.edu databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tarski Handling bitcoin conflicts through a glimpse of structure Multi-CNN and decision tree based driving behavior evaluation Session details: WT - web technologies track Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1