基于机载高光谱图像的浑浊海岸密集测深

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Photogrammetric Engineering and Remote Sensing Pub Date : 2021-12-01 DOI:10.14358/pers.21-00015r2
Steven Martinez Vargas, C. Delrieux, Katy L. Blanco, A. Vitale
{"title":"基于机载高光谱图像的浑浊海岸密集测深","authors":"Steven Martinez Vargas, C. Delrieux, Katy L. Blanco, A. Vitale","doi":"10.14358/pers.21-00015r2","DOIUrl":null,"url":null,"abstract":"We used airborne hyperspectral images to generate a dense survey of bathymetric data in the Bahía Blanca estuary (Buenos Aires Province, Argentina). This estuarine area is characterized by intense sediment transport turning the water muddy, and thus optical bathymetric estimations\n are difficult. We used 24 spectral bands in a range of 500–900 nm acquired with a hyperspectral camera aboard an unmanned aerial vehicle, together with 100 bathymetry data points surveyed with a sonar sensor aboard an unmanned surface vehicle, covering an area of about 800 m2.\n Random-forest and support-vector-machine regressors were trained with this data set. The resulting model yielded a determination coefficient of 0.815 with unseen data, a root-mean-square error of 0.166 m, and an absolute average error less than 2%. These results allow dense and accurate reconstructions\n of the underwater profile in wide, muddy, shallow regions of the Bahía Blanca estuary, showing the feasibility of hyperspectral imagery combined with sonar data in turbid shallow waters.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dense Bathymetry in Turbid Coastal Zones Using Airborne Hyperspectral Images\",\"authors\":\"Steven Martinez Vargas, C. Delrieux, Katy L. Blanco, A. Vitale\",\"doi\":\"10.14358/pers.21-00015r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used airborne hyperspectral images to generate a dense survey of bathymetric data in the Bahía Blanca estuary (Buenos Aires Province, Argentina). This estuarine area is characterized by intense sediment transport turning the water muddy, and thus optical bathymetric estimations\\n are difficult. We used 24 spectral bands in a range of 500–900 nm acquired with a hyperspectral camera aboard an unmanned aerial vehicle, together with 100 bathymetry data points surveyed with a sonar sensor aboard an unmanned surface vehicle, covering an area of about 800 m2.\\n Random-forest and support-vector-machine regressors were trained with this data set. The resulting model yielded a determination coefficient of 0.815 with unseen data, a root-mean-square error of 0.166 m, and an absolute average error less than 2%. These results allow dense and accurate reconstructions\\n of the underwater profile in wide, muddy, shallow regions of the Bahía Blanca estuary, showing the feasibility of hyperspectral imagery combined with sonar data in turbid shallow waters.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.21-00015r2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.21-00015r2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

我们使用航空高光谱图像在Bahía布兰卡河口(阿根廷布宜诺斯艾利斯省)生成密集的测深数据调查。该河口地区泥沙运移剧烈,水体浑浊,因此光学测深比较困难。我们使用无人机上的高光谱相机在500-900 nm范围内采集的24个光谱波段,以及无人水面车辆上的声纳传感器测量的100个测深数据点,覆盖了约800平方米的区域。使用该数据集训练随机森林和支持向量机回归器。所得模型在未见数据下的决定系数为0.815,均方根误差为0.166 m,绝对平均误差小于2%。这些结果可以在Bahía布兰卡河口宽阔、泥泞的浅水区域进行密集而准确的水下剖面重建,显示了高光谱图像与声纳数据在浑浊浅水中结合的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dense Bathymetry in Turbid Coastal Zones Using Airborne Hyperspectral Images
We used airborne hyperspectral images to generate a dense survey of bathymetric data in the Bahía Blanca estuary (Buenos Aires Province, Argentina). This estuarine area is characterized by intense sediment transport turning the water muddy, and thus optical bathymetric estimations are difficult. We used 24 spectral bands in a range of 500–900 nm acquired with a hyperspectral camera aboard an unmanned aerial vehicle, together with 100 bathymetry data points surveyed with a sonar sensor aboard an unmanned surface vehicle, covering an area of about 800 m2. Random-forest and support-vector-machine regressors were trained with this data set. The resulting model yielded a determination coefficient of 0.815 with unseen data, a root-mean-square error of 0.166 m, and an absolute average error less than 2%. These results allow dense and accurate reconstructions of the underwater profile in wide, muddy, shallow regions of the Bahía Blanca estuary, showing the feasibility of hyperspectral imagery combined with sonar data in turbid shallow waters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
期刊最新文献
A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Identification of Critical Urban Clusters for Placating Urban Heat Island Effects over Fast-Growing Tropical City Regions: Estimating the Contribution of Different City Sizes in Escalating UHI Intensity A Novel Object Detection Method for Solid Waste Incorporating a Weighted Deformable Convolution GIS Tips & Tricks ‐ Relationships Count when Mapping? An Integrated Approach for Wildfire Photography Telemetry using WRF Numerical Forecast Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1