{"title":"标准化死亡率、泊松-伽玛和随机Sic模型在马来西亚肺炎疾病制图中的比较","authors":"Ijlal Mohd Diah, Nazrina Aziz","doi":"10.32890/jict2022.21.4.4","DOIUrl":null,"url":null,"abstract":"Pneumonia is one of the primary causes of death from infectious diseases. Traditionally, its spread has been tracked based on thetotal number of cases reported, with no concern for geographical distribution. Disease mapping is among the ways public health andthe government can monitor diseases as a preventative strategy. Clear pictures of the risk areas can be seen using this method. Relative risk estimation is a significant part of disease mapping that needs to be considered when studying disease occurrence. This paper aimed to estimate the relative risk values for pneumonia based on three models and compare the results. The approaches used in this study were Standardized Morbidity Ratio (SMR), Poisson-gamma, and discrete time-space stochastic Susceptible-Infected-Carriers (SIC) models, which were applied in estimating the relative risk values. Results showed that Kuala Lumpur was classified as a very low-risk area for pneumonia incidence when using the SMR and Poisson-gamma models. In contrast, Selangor was identified as a very low-risk area when using the discrete time-space stochastic SIC model. Putrajaya was categorised as a very high-risk area in the results of all three types of methods. In conclusion, this stochastic SIC model demonstrated better performance than the conventional models.","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Comparison between Standardized Mortality Ratio, Poisson-Gamma and Stochastic Sic Model for Pneumonia Disease Mapping in Malaysia\",\"authors\":\"Ijlal Mohd Diah, Nazrina Aziz\",\"doi\":\"10.32890/jict2022.21.4.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is one of the primary causes of death from infectious diseases. Traditionally, its spread has been tracked based on thetotal number of cases reported, with no concern for geographical distribution. Disease mapping is among the ways public health andthe government can monitor diseases as a preventative strategy. Clear pictures of the risk areas can be seen using this method. Relative risk estimation is a significant part of disease mapping that needs to be considered when studying disease occurrence. This paper aimed to estimate the relative risk values for pneumonia based on three models and compare the results. The approaches used in this study were Standardized Morbidity Ratio (SMR), Poisson-gamma, and discrete time-space stochastic Susceptible-Infected-Carriers (SIC) models, which were applied in estimating the relative risk values. Results showed that Kuala Lumpur was classified as a very low-risk area for pneumonia incidence when using the SMR and Poisson-gamma models. In contrast, Selangor was identified as a very low-risk area when using the discrete time-space stochastic SIC model. Putrajaya was categorised as a very high-risk area in the results of all three types of methods. In conclusion, this stochastic SIC model demonstrated better performance than the conventional models.\",\"PeriodicalId\":39396,\"journal\":{\"name\":\"International Journal of Information and Communication Technology\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32890/jict2022.21.4.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/jict2022.21.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
The Comparison between Standardized Mortality Ratio, Poisson-Gamma and Stochastic Sic Model for Pneumonia Disease Mapping in Malaysia
Pneumonia is one of the primary causes of death from infectious diseases. Traditionally, its spread has been tracked based on thetotal number of cases reported, with no concern for geographical distribution. Disease mapping is among the ways public health andthe government can monitor diseases as a preventative strategy. Clear pictures of the risk areas can be seen using this method. Relative risk estimation is a significant part of disease mapping that needs to be considered when studying disease occurrence. This paper aimed to estimate the relative risk values for pneumonia based on three models and compare the results. The approaches used in this study were Standardized Morbidity Ratio (SMR), Poisson-gamma, and discrete time-space stochastic Susceptible-Infected-Carriers (SIC) models, which were applied in estimating the relative risk values. Results showed that Kuala Lumpur was classified as a very low-risk area for pneumonia incidence when using the SMR and Poisson-gamma models. In contrast, Selangor was identified as a very low-risk area when using the discrete time-space stochastic SIC model. Putrajaya was categorised as a very high-risk area in the results of all three types of methods. In conclusion, this stochastic SIC model demonstrated better performance than the conventional models.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM