A. Giovannelli, Ambra Citton, Cristian Tegami, Tommaso Proietti, O. Ricchi, Cristina Tinti
{"title":"在数据丰富的环境下预测GDP及其组成部分:间接方法的优点","authors":"A. Giovannelli, Ambra Citton, Cristian Tegami, Tommaso Proietti, O. Ricchi, Cristina Tinti","doi":"10.2139/ssrn.3614110","DOIUrl":null,"url":null,"abstract":"The national accounts provide a coherent and exaustive description of the current state of the economy, but are available at the quarterly frequency and are released with a nonignorable publication lag. The paper proposes and illustrates a method for nowcasting and forecasting the sixteen main components of Gross Domestic Product (GDP) by output and expenditure type at the monthly frequency, using a high-dimensional set of monthly economic indicators spanning the space of the common macroeconomic and financial factors. The projection on the common space is carried out by combining the individual nowcasts and forecasts arising from all possible bivariate models of the unobserved monthly GDP component and the observed monthly indicator. We discuss several pooling strategies and we select the one showing the best predictive performance according to a pseudo real time forecasting experiment. Monthly GDP can be indirectly estimated by the contemporaneous aggregation of the value added of the different industries and of the expenditure components. This enables the comparative assessment of the indirect nowcasts and forecasts vis-a-vis the direct approach and a growth accounting exercise. Our approach meets the challenges posed by the dimensionality, since it can handle a large number of time series with a complexity that increases linearly with the cross-sectional dimension, while retaining the essential heterogeneity of the information about the macroeconomy. The application to the Italian case leads to several interesting discoveries concerning the time-varying predictive content of the information carried by the monthly indicators.","PeriodicalId":18164,"journal":{"name":"Macroeconomics: National Income & Product Accounts eJournal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nowcasting GDP and its Components in a Data-Rich Environment: The Merits of the Indirect Approach\",\"authors\":\"A. Giovannelli, Ambra Citton, Cristian Tegami, Tommaso Proietti, O. Ricchi, Cristina Tinti\",\"doi\":\"10.2139/ssrn.3614110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The national accounts provide a coherent and exaustive description of the current state of the economy, but are available at the quarterly frequency and are released with a nonignorable publication lag. The paper proposes and illustrates a method for nowcasting and forecasting the sixteen main components of Gross Domestic Product (GDP) by output and expenditure type at the monthly frequency, using a high-dimensional set of monthly economic indicators spanning the space of the common macroeconomic and financial factors. The projection on the common space is carried out by combining the individual nowcasts and forecasts arising from all possible bivariate models of the unobserved monthly GDP component and the observed monthly indicator. We discuss several pooling strategies and we select the one showing the best predictive performance according to a pseudo real time forecasting experiment. Monthly GDP can be indirectly estimated by the contemporaneous aggregation of the value added of the different industries and of the expenditure components. This enables the comparative assessment of the indirect nowcasts and forecasts vis-a-vis the direct approach and a growth accounting exercise. Our approach meets the challenges posed by the dimensionality, since it can handle a large number of time series with a complexity that increases linearly with the cross-sectional dimension, while retaining the essential heterogeneity of the information about the macroeconomy. The application to the Italian case leads to several interesting discoveries concerning the time-varying predictive content of the information carried by the monthly indicators.\",\"PeriodicalId\":18164,\"journal\":{\"name\":\"Macroeconomics: National Income & Product Accounts eJournal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macroeconomics: National Income & Product Accounts eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3614110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: National Income & Product Accounts eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3614110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nowcasting GDP and its Components in a Data-Rich Environment: The Merits of the Indirect Approach
The national accounts provide a coherent and exaustive description of the current state of the economy, but are available at the quarterly frequency and are released with a nonignorable publication lag. The paper proposes and illustrates a method for nowcasting and forecasting the sixteen main components of Gross Domestic Product (GDP) by output and expenditure type at the monthly frequency, using a high-dimensional set of monthly economic indicators spanning the space of the common macroeconomic and financial factors. The projection on the common space is carried out by combining the individual nowcasts and forecasts arising from all possible bivariate models of the unobserved monthly GDP component and the observed monthly indicator. We discuss several pooling strategies and we select the one showing the best predictive performance according to a pseudo real time forecasting experiment. Monthly GDP can be indirectly estimated by the contemporaneous aggregation of the value added of the different industries and of the expenditure components. This enables the comparative assessment of the indirect nowcasts and forecasts vis-a-vis the direct approach and a growth accounting exercise. Our approach meets the challenges posed by the dimensionality, since it can handle a large number of time series with a complexity that increases linearly with the cross-sectional dimension, while retaining the essential heterogeneity of the information about the macroeconomy. The application to the Italian case leads to several interesting discoveries concerning the time-varying predictive content of the information carried by the monthly indicators.