基于卷积神经网络和贝叶斯估计的时空频谱负荷预测

Xiangyu Ren, Hamed Mosavat-Jahromi, Lin X. Cai, D. Kidston
{"title":"基于卷积神经网络和贝叶斯估计的时空频谱负荷预测","authors":"Xiangyu Ren, Hamed Mosavat-Jahromi, Lin X. Cai, D. Kidston","doi":"10.1109/GLOBECOM42002.2020.9348001","DOIUrl":null,"url":null,"abstract":"Radio spectrum is a limited and increasingly scarce resource, which motivates alternative usage methods such as dynamic spectrum allocation (DSA). DSA of a frequency band requires an accurate prediction of spectrum usage in both the time and spatial domains with minimal sensing cost. In this paper, we address challenge in two steps. First, in order to make the best use of the limited sensors in the region, we deploy a deep learning prediction model based on convolutional neural networks (CNNs) and residual networks (ResNets), to predict spatio-temporal spectrum usage at the sensors' locations. Second, given an area enclosed by a few sensors, a Bayesian estimation model is proposed to first derive the location distribution of a transmitter, and then obtain the interference power distribution within the area. Simulation results show the efficacy and efficiency of the proposed prediction models.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatio-temporal Spectrum Load Prediction using Convolutional Neural Network and Bayesian Estimation\",\"authors\":\"Xiangyu Ren, Hamed Mosavat-Jahromi, Lin X. Cai, D. Kidston\",\"doi\":\"10.1109/GLOBECOM42002.2020.9348001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio spectrum is a limited and increasingly scarce resource, which motivates alternative usage methods such as dynamic spectrum allocation (DSA). DSA of a frequency band requires an accurate prediction of spectrum usage in both the time and spatial domains with minimal sensing cost. In this paper, we address challenge in two steps. First, in order to make the best use of the limited sensors in the region, we deploy a deep learning prediction model based on convolutional neural networks (CNNs) and residual networks (ResNets), to predict spatio-temporal spectrum usage at the sensors' locations. Second, given an area enclosed by a few sensors, a Bayesian estimation model is proposed to first derive the location distribution of a transmitter, and then obtain the interference power distribution within the area. Simulation results show the efficacy and efficiency of the proposed prediction models.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9348001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无线电频谱是一种有限且日益稀缺的资源,这激发了动态频谱分配(DSA)等替代使用方法。一个频带的DSA需要以最小的传感成本准确预测时间和空间域的频谱使用情况。在本文中,我们将分两步解决这一挑战。首先,为了充分利用该区域有限的传感器,我们部署了基于卷积神经网络(cnn)和残差网络(ResNets)的深度学习预测模型,以预测传感器位置的时空频谱使用情况。其次,给定一个被几个传感器包围的区域,提出一个贝叶斯估计模型,首先推导出发射机的位置分布,然后得到该区域内的干扰功率分布;仿真结果表明了所提预测模型的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal Spectrum Load Prediction using Convolutional Neural Network and Bayesian Estimation
Radio spectrum is a limited and increasingly scarce resource, which motivates alternative usage methods such as dynamic spectrum allocation (DSA). DSA of a frequency band requires an accurate prediction of spectrum usage in both the time and spatial domains with minimal sensing cost. In this paper, we address challenge in two steps. First, in order to make the best use of the limited sensors in the region, we deploy a deep learning prediction model based on convolutional neural networks (CNNs) and residual networks (ResNets), to predict spatio-temporal spectrum usage at the sensors' locations. Second, given an area enclosed by a few sensors, a Bayesian estimation model is proposed to first derive the location distribution of a transmitter, and then obtain the interference power distribution within the area. Simulation results show the efficacy and efficiency of the proposed prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1