{"title":"一类时变摄动奇异系统稳定性的增长条件","authors":"Faten Ezzine, M. Hammami","doi":"10.14736/kyb-2022-1-0001","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of stability of linear time–varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Growth conditions for the stability of a class of time-varying perturbed singular systems\",\"authors\":\"Faten Ezzine, M. Hammami\",\"doi\":\"10.14736/kyb-2022-1-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of stability of linear time–varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2022-1-0001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2022-1-0001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Growth conditions for the stability of a class of time-varying perturbed singular systems
In this paper, we investigate the problem of stability of linear time–varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.
期刊介绍:
Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences.
Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.