McKean-Vlasov SDEs分布的导数估计

Xing Huang, Feng-Yu Wang
{"title":"McKean-Vlasov SDEs分布的导数估计","authors":"Xing Huang, Feng-Yu Wang","doi":"10.1214/21-EJP582","DOIUrl":null,"url":null,"abstract":"By using the heat kernel parameter expansion with respect to the frozen SDEs, the intrinsic derivative is estimated for the law of Mckean-Vlasov SDEs with respect to the initial distribution. As an application, the total variation distance between the laws of two solutions is bounded by the Wasserstein distance for initial distributions. These extend some recent results proved for distribution-free noise by using the coupling method and Malliavin calculus.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Derivative estimates on distributions of McKean-Vlasov SDEs\",\"authors\":\"Xing Huang, Feng-Yu Wang\",\"doi\":\"10.1214/21-EJP582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the heat kernel parameter expansion with respect to the frozen SDEs, the intrinsic derivative is estimated for the law of Mckean-Vlasov SDEs with respect to the initial distribution. As an application, the total variation distance between the laws of two solutions is bounded by the Wasserstein distance for initial distributions. These extend some recent results proved for distribution-free noise by using the coupling method and Malliavin calculus.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-EJP582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

通过对冻结SDEs的热核参数展开,估计了Mckean-Vlasov SDEs定律对初始分布的固有导数。作为应用,对于初始分布,两个解之间的总变异距离以Wasserstein距离为界。这些结果推广了最近用耦合方法和Malliavin演算对无分布噪声所证明的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivative estimates on distributions of McKean-Vlasov SDEs
By using the heat kernel parameter expansion with respect to the frozen SDEs, the intrinsic derivative is estimated for the law of Mckean-Vlasov SDEs with respect to the initial distribution. As an application, the total variation distance between the laws of two solutions is bounded by the Wasserstein distance for initial distributions. These extend some recent results proved for distribution-free noise by using the coupling method and Malliavin calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic laws of summands I: square integrable independent random variables On cyclic and nontransitive probabilities At the edge of a one-dimensional jellium Population genetic models of dormancy Optimal and algorithmic norm regularization of random matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1