{"title":"利用本体支持关联规则先验结果","authors":"D. Wardani, Achmad Khusyaini","doi":"10.11591/eecsi.v5.1642","DOIUrl":null,"url":null,"abstract":"Association rule is one of the data mining techniques to find associative combinations of items. There are several algorithms including Apriori, FP Growth, and CT-Pro. One of the advantages of the Apriori algorithm is that it produces many rules. To improve its result, one of the methods is by using the semantic web technology. This work proposes how the hierarchical type of ontology can be utilized by the Apriori algorithm to improve the results. The Apriori with ontology implements the Interestingness Rule (IR) which is a parameter to determine the degree of association between combinations of items in a dataset. The series of experiments show that the proposed idea can improve the results compare to the default Apriori algorithm. Keywords—Association Rule, Apriori, Ontology, Interestingness","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Utilization of Ontology to Support The Results of Association Rule Apriori\",\"authors\":\"D. Wardani, Achmad Khusyaini\",\"doi\":\"10.11591/eecsi.v5.1642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rule is one of the data mining techniques to find associative combinations of items. There are several algorithms including Apriori, FP Growth, and CT-Pro. One of the advantages of the Apriori algorithm is that it produces many rules. To improve its result, one of the methods is by using the semantic web technology. This work proposes how the hierarchical type of ontology can be utilized by the Apriori algorithm to improve the results. The Apriori with ontology implements the Interestingness Rule (IR) which is a parameter to determine the degree of association between combinations of items in a dataset. The series of experiments show that the proposed idea can improve the results compare to the default Apriori algorithm. Keywords—Association Rule, Apriori, Ontology, Interestingness\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eecsi.v5.1642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v5.1642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Utilization of Ontology to Support The Results of Association Rule Apriori
Association rule is one of the data mining techniques to find associative combinations of items. There are several algorithms including Apriori, FP Growth, and CT-Pro. One of the advantages of the Apriori algorithm is that it produces many rules. To improve its result, one of the methods is by using the semantic web technology. This work proposes how the hierarchical type of ontology can be utilized by the Apriori algorithm to improve the results. The Apriori with ontology implements the Interestingness Rule (IR) which is a parameter to determine the degree of association between combinations of items in a dataset. The series of experiments show that the proposed idea can improve the results compare to the default Apriori algorithm. Keywords—Association Rule, Apriori, Ontology, Interestingness