快速数值多元多点计算

Sumanta Ghosh, P. Harsha, Simao Herdade, Mrinal Kumar, Ramprasad Saptharishi
{"title":"快速数值多元多点计算","authors":"Sumanta Ghosh, P. Harsha, Simao Herdade, Mrinal Kumar, Ramprasad Saptharishi","doi":"10.48550/arXiv.2304.01191","DOIUrl":null,"url":null,"abstract":"We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \\emph{exact} and \\emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each variable, and (2) points $a_1,..., a_N$ each of whose coordinate has value bounded by one and bit-complexity $s$. * Approximate version: Given additionally an accuracy parameter $t$, the algorithm computes rational numbers $\\beta_1,\\ldots, \\beta_N$ such that $|f(a_i) - \\beta_i| \\leq \\frac{1}{2^t}$ for all $i$, and has a running time of $((Nm + d^m)(s + t))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. * Exact version (when over rationals): Given additionally a bound $c$ on the bit-complexity of all evaluations, the algorithm computes the rational numbers $f(a_1), ... , f(a_N)$, in time $((Nm + d^m)(s + c))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. . Prior to this work, a nearly-linear time algorithm for multivariate multipoint evaluation (exact or approximate) over any infinite field appears to be known only for the case of univariate polynomials, and was discovered in a recent work of Moroz (FOCS 2021). In this work, we extend this result from the univariate to the multivariate setting. However, our algorithm is based on ideas that seem to be conceptually different from those of Moroz (FOCS 2021) and crucially relies on a recent algorithm of Bhargava, Ghosh, Guo, Kumar&Umans (FOCS 2022) for multivariate multipoint evaluation over finite fields, and known efficient algorithms for the problems of rational number reconstruction and fast Chinese remaindering in computational number theory.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Numerical Multivariate Multipoint Evaluation\",\"authors\":\"Sumanta Ghosh, P. Harsha, Simao Herdade, Mrinal Kumar, Ramprasad Saptharishi\",\"doi\":\"10.48550/arXiv.2304.01191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \\\\emph{exact} and \\\\emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each variable, and (2) points $a_1,..., a_N$ each of whose coordinate has value bounded by one and bit-complexity $s$. * Approximate version: Given additionally an accuracy parameter $t$, the algorithm computes rational numbers $\\\\beta_1,\\\\ldots, \\\\beta_N$ such that $|f(a_i) - \\\\beta_i| \\\\leq \\\\frac{1}{2^t}$ for all $i$, and has a running time of $((Nm + d^m)(s + t))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. * Exact version (when over rationals): Given additionally a bound $c$ on the bit-complexity of all evaluations, the algorithm computes the rational numbers $f(a_1), ... , f(a_N)$, in time $((Nm + d^m)(s + c))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. . Prior to this work, a nearly-linear time algorithm for multivariate multipoint evaluation (exact or approximate) over any infinite field appears to be known only for the case of univariate polynomials, and was discovered in a recent work of Moroz (FOCS 2021). In this work, we extend this result from the univariate to the multivariate setting. However, our algorithm is based on ideas that seem to be conceptually different from those of Moroz (FOCS 2021) and crucially relies on a recent algorithm of Bhargava, Ghosh, Guo, Kumar&Umans (FOCS 2022) for multivariate multipoint evaluation over finite fields, and known efficient algorithms for the problems of rational number reconstruction and fast Chinese remaindering in computational number theory.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.01191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对有理数、实数和复数域上的多元多点求值问题,设计了近线性时间数值算法。我们考虑了算法的\emph{精确}版本和\emph{近似}版本。算法的输入是(1)一个$m$变量多项式$f$的系数,每个变量的度数为$d$,(2)点$a_1,..., a_N$,每个点的坐标都有一个以1为界的值和位复杂度$s$。*近似版本:给定一个额外的精度参数$t$,算法计算有理数$\beta_1,\ldots, \beta_N$,使得$|f(a_i) - \beta_i| \leq \frac{1}{2^t}$适用于所有$i$,并且运行时间为$((Nm + d^m)(s + t))^{1 + o(1)}$适用于所有$m$和所有足够大的$d$。*精确版本(当超过有理数时):在所有求值的位复杂度上额外给定一个界$c$,算法计算有理数$f(a_1), ... , f(a_N)$,及时$((Nm + d^m)(s + c))^{1 + o(1)}$对于所有$m$和所有足够大的$d$ . .在此工作之前,对于任何无限域上的多元多点评估(精确或近似)的近线性时间算法似乎仅在单变量多项式的情况下已知,并且在Moroz的最近工作中被发现(FOCS 2021)。在这项工作中,我们将这个结果从单变量扩展到多变量设置。然而,我们的算法基于的思想在概念上似乎与Moroz (FOCS 2021)不同,并且关键地依赖于Bhargava, Ghosh, Guo, Kumar&Umans (FOCS 2022)最近的一种算法,用于有限域上的多元多点评估,以及已知的有效算法,用于计算数论中的有理数重建和快速中文余数问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Numerical Multivariate Multipoint Evaluation
We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \emph{exact} and \emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each variable, and (2) points $a_1,..., a_N$ each of whose coordinate has value bounded by one and bit-complexity $s$. * Approximate version: Given additionally an accuracy parameter $t$, the algorithm computes rational numbers $\beta_1,\ldots, \beta_N$ such that $|f(a_i) - \beta_i| \leq \frac{1}{2^t}$ for all $i$, and has a running time of $((Nm + d^m)(s + t))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. * Exact version (when over rationals): Given additionally a bound $c$ on the bit-complexity of all evaluations, the algorithm computes the rational numbers $f(a_1), ... , f(a_N)$, in time $((Nm + d^m)(s + c))^{1 + o(1)}$ for all $m$ and all sufficiently large $d$. . Prior to this work, a nearly-linear time algorithm for multivariate multipoint evaluation (exact or approximate) over any infinite field appears to be known only for the case of univariate polynomials, and was discovered in a recent work of Moroz (FOCS 2021). In this work, we extend this result from the univariate to the multivariate setting. However, our algorithm is based on ideas that seem to be conceptually different from those of Moroz (FOCS 2021) and crucially relies on a recent algorithm of Bhargava, Ghosh, Guo, Kumar&Umans (FOCS 2022) for multivariate multipoint evaluation over finite fields, and known efficient algorithms for the problems of rational number reconstruction and fast Chinese remaindering in computational number theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dependency schemes in CDCL-based QBF solving: a proof-theoretic study On blocky ranks of matrices Fractional Linear Matroid Matching is in quasi-NC Aaronson-Ambainis Conjecture Is True For Random Restrictions Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1