Cucun Very Angkoso, Y. F. Hendrawan, Ari Kusumaningsih, Rima Tri Wahyuningrum
{"title":"颜色级联框架在两种不同分类器上的疟疾检测性能分析","authors":"Cucun Very Angkoso, Y. F. Hendrawan, Ari Kusumaningsih, Rima Tri Wahyuningrum","doi":"10.11591/eecsi.v5.1605","DOIUrl":null,"url":null,"abstract":"Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection\",\"authors\":\"Cucun Very Angkoso, Y. F. Hendrawan, Ari Kusumaningsih, Rima Tri Wahyuningrum\",\"doi\":\"10.11591/eecsi.v5.1605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eecsi.v5.1605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v5.1605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection
Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.