{"title":"纳米粉体负载的超低含量Co-Rh双金属催化剂用于单甲酰三环癸烯氢甲酰化制备高附加值精细化学品","authors":"Chengyang Li, Libo Zhang, Yubo Ma, Tianfu Wang","doi":"10.3184/146867818X15319903829173","DOIUrl":null,"url":null,"abstract":"The hydroformylation of monoformyltricyclodecenes (MFTD) to diformyltricyclodecanes (DFTD) was studied systematically. A series of 0.006 wt% Rh–0.006 wt% Co catalysts supported on commercially available nanopowders such as Al2O3, ZnO, TiO2 and CeO2 was prepared by the incipient wetness method and used to catalyse the hydroformylation of MFTD to DFTD. The 0.006 wt% Rh–0.006 wt% Co/ZnO catalyst showed the highest catalytic performance among the catalysts investigated, thus 41.8% DFTD yield with 100% DFTD selectivity could be achieved. This suggested that there may be a key role of the carrier on the catalytic performance in MFTD hydroformylation. Furthermore, the kinetic profiles for MFTD hydroformylation over the 0.006 wt% Rh–0.030 wt% Co/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These results collectively suggested that a particular reaction temperature might benefit MFTD hydroformylation. There may be some agglomeration of the active sites at higher reaction temperatures.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"52 1","pages":"254 - 261"},"PeriodicalIF":2.1000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopowder-Supported Ultra-Low Content Co–Rh Bimetallic Catalysts for Hydroformylation of Monoformyltricyclodecenes to Value-Added Fine Chemicals\",\"authors\":\"Chengyang Li, Libo Zhang, Yubo Ma, Tianfu Wang\",\"doi\":\"10.3184/146867818X15319903829173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydroformylation of monoformyltricyclodecenes (MFTD) to diformyltricyclodecanes (DFTD) was studied systematically. A series of 0.006 wt% Rh–0.006 wt% Co catalysts supported on commercially available nanopowders such as Al2O3, ZnO, TiO2 and CeO2 was prepared by the incipient wetness method and used to catalyse the hydroformylation of MFTD to DFTD. The 0.006 wt% Rh–0.006 wt% Co/ZnO catalyst showed the highest catalytic performance among the catalysts investigated, thus 41.8% DFTD yield with 100% DFTD selectivity could be achieved. This suggested that there may be a key role of the carrier on the catalytic performance in MFTD hydroformylation. Furthermore, the kinetic profiles for MFTD hydroformylation over the 0.006 wt% Rh–0.030 wt% Co/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These results collectively suggested that a particular reaction temperature might benefit MFTD hydroformylation. There may be some agglomeration of the active sites at higher reaction temperatures.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"52 1\",\"pages\":\"254 - 261\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3184/146867818X15319903829173\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3184/146867818X15319903829173","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nanopowder-Supported Ultra-Low Content Co–Rh Bimetallic Catalysts for Hydroformylation of Monoformyltricyclodecenes to Value-Added Fine Chemicals
The hydroformylation of monoformyltricyclodecenes (MFTD) to diformyltricyclodecanes (DFTD) was studied systematically. A series of 0.006 wt% Rh–0.006 wt% Co catalysts supported on commercially available nanopowders such as Al2O3, ZnO, TiO2 and CeO2 was prepared by the incipient wetness method and used to catalyse the hydroformylation of MFTD to DFTD. The 0.006 wt% Rh–0.006 wt% Co/ZnO catalyst showed the highest catalytic performance among the catalysts investigated, thus 41.8% DFTD yield with 100% DFTD selectivity could be achieved. This suggested that there may be a key role of the carrier on the catalytic performance in MFTD hydroformylation. Furthermore, the kinetic profiles for MFTD hydroformylation over the 0.006 wt% Rh–0.030 wt% Co/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These results collectively suggested that a particular reaction temperature might benefit MFTD hydroformylation. There may be some agglomeration of the active sites at higher reaction temperatures.