D. Amanatidis, Georgios Chatzisavvas, Michael F. Dossis
{"title":"基于脑MRI的自身免疫性疾病深度学习诊断","authors":"D. Amanatidis, Georgios Chatzisavvas, Michael F. Dossis","doi":"10.1109/SEEDA-CECNSM57760.2022.9932959","DOIUrl":null,"url":null,"abstract":"The diagnosis of an autoimmune disease usually requires a careful examination of the patient’s health history and the evaluation of any possible occupation and environment related exposures. Frequently, autoimmune disorders have early symptoms such as joint and muscle pain, fatigue, weight loss or fever. These symptoms however are non-specific and imaging technology tools can be extremely valuable for precise diagnosis. In this paper, we deal with autoimmune diseases that result in brain damage and more specifically, multiple sclerosis. Classification of brain MRI images is performed leveraging a Convolutional Neural Network, showing excellent results.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain MRI based diagnosis of autoimmune diseases using deep learning\",\"authors\":\"D. Amanatidis, Georgios Chatzisavvas, Michael F. Dossis\",\"doi\":\"10.1109/SEEDA-CECNSM57760.2022.9932959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of an autoimmune disease usually requires a careful examination of the patient’s health history and the evaluation of any possible occupation and environment related exposures. Frequently, autoimmune disorders have early symptoms such as joint and muscle pain, fatigue, weight loss or fever. These symptoms however are non-specific and imaging technology tools can be extremely valuable for precise diagnosis. In this paper, we deal with autoimmune diseases that result in brain damage and more specifically, multiple sclerosis. Classification of brain MRI images is performed leveraging a Convolutional Neural Network, showing excellent results.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"23 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain MRI based diagnosis of autoimmune diseases using deep learning
The diagnosis of an autoimmune disease usually requires a careful examination of the patient’s health history and the evaluation of any possible occupation and environment related exposures. Frequently, autoimmune disorders have early symptoms such as joint and muscle pain, fatigue, weight loss or fever. These symptoms however are non-specific and imaging technology tools can be extremely valuable for precise diagnosis. In this paper, we deal with autoimmune diseases that result in brain damage and more specifically, multiple sclerosis. Classification of brain MRI images is performed leveraging a Convolutional Neural Network, showing excellent results.
期刊介绍:
Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.