{"title":"金属-海藻酸盐-壳聚糖三元复合材料对甲基橙的控制吸收","authors":"B. Steiger, L. Wilson","doi":"10.3390/surfaces5040031","DOIUrl":null,"url":null,"abstract":"Three ternary metal composites (TMCs) with iron nitrate, aluminum nitrate, and copper nitrate (Fe-TMC-N, Al-TMC-N, Cu-TMC-N) were synthesized and their physicochemical properties were investigated. Characterization of the TMCs was achieved by elemental analysis (XPS), infrared (IR) spectroscopy and thermogravimetric analysis (TGA). The surface charge of the TMCs was estimated from the point-of-zero-charge (PZC), which depended on the type of metal nitrate precursor. The adsorption properties of the TMCs showed the vital role of the metal center, where methylene blue (MB) is a cationic dye probe that confirmed the effects of surface charge for effective methyl orange (MO) anion dye uptake. MB uptake was negligible for Al-TMC-N and Cu-TMC-N, whereas moderate MB uptake occurs for Fe-TMC-N (26 mg/g) at equilibrium. The adsorption capacity of MO adopted the Langmuir isotherm model, as follows: Al-TMC-N (422 mg/g), Cu-TMC-N (467 mg/g) and Fe-TMC-N (42 mg/g). The kinetic adsorption profiles followed the pseudo-second order model. Generally, iron incorporation within the TMC structure is less suitable for MO anion removal, whereas Cu- or Al-based materials show greater (10-fold) MO uptake over Fe-based TMCs. The dye uptake results herein provide new insight on adsorbent design for controlled adsorption of oxyanion species from water.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ternary Metal-Alginate-Chitosan Composites for Controlled Uptake of Methyl Orange\",\"authors\":\"B. Steiger, L. Wilson\",\"doi\":\"10.3390/surfaces5040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three ternary metal composites (TMCs) with iron nitrate, aluminum nitrate, and copper nitrate (Fe-TMC-N, Al-TMC-N, Cu-TMC-N) were synthesized and their physicochemical properties were investigated. Characterization of the TMCs was achieved by elemental analysis (XPS), infrared (IR) spectroscopy and thermogravimetric analysis (TGA). The surface charge of the TMCs was estimated from the point-of-zero-charge (PZC), which depended on the type of metal nitrate precursor. The adsorption properties of the TMCs showed the vital role of the metal center, where methylene blue (MB) is a cationic dye probe that confirmed the effects of surface charge for effective methyl orange (MO) anion dye uptake. MB uptake was negligible for Al-TMC-N and Cu-TMC-N, whereas moderate MB uptake occurs for Fe-TMC-N (26 mg/g) at equilibrium. The adsorption capacity of MO adopted the Langmuir isotherm model, as follows: Al-TMC-N (422 mg/g), Cu-TMC-N (467 mg/g) and Fe-TMC-N (42 mg/g). The kinetic adsorption profiles followed the pseudo-second order model. Generally, iron incorporation within the TMC structure is less suitable for MO anion removal, whereas Cu- or Al-based materials show greater (10-fold) MO uptake over Fe-based TMCs. The dye uptake results herein provide new insight on adsorbent design for controlled adsorption of oxyanion species from water.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces5040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces5040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ternary Metal-Alginate-Chitosan Composites for Controlled Uptake of Methyl Orange
Three ternary metal composites (TMCs) with iron nitrate, aluminum nitrate, and copper nitrate (Fe-TMC-N, Al-TMC-N, Cu-TMC-N) were synthesized and their physicochemical properties were investigated. Characterization of the TMCs was achieved by elemental analysis (XPS), infrared (IR) spectroscopy and thermogravimetric analysis (TGA). The surface charge of the TMCs was estimated from the point-of-zero-charge (PZC), which depended on the type of metal nitrate precursor. The adsorption properties of the TMCs showed the vital role of the metal center, where methylene blue (MB) is a cationic dye probe that confirmed the effects of surface charge for effective methyl orange (MO) anion dye uptake. MB uptake was negligible for Al-TMC-N and Cu-TMC-N, whereas moderate MB uptake occurs for Fe-TMC-N (26 mg/g) at equilibrium. The adsorption capacity of MO adopted the Langmuir isotherm model, as follows: Al-TMC-N (422 mg/g), Cu-TMC-N (467 mg/g) and Fe-TMC-N (42 mg/g). The kinetic adsorption profiles followed the pseudo-second order model. Generally, iron incorporation within the TMC structure is less suitable for MO anion removal, whereas Cu- or Al-based materials show greater (10-fold) MO uptake over Fe-based TMCs. The dye uptake results herein provide new insight on adsorbent design for controlled adsorption of oxyanion species from water.