{"title":"基于图谱的脑MR数据重建的加权总变异方法","authors":"Mingli Zhang, Kuldeep Kumar, Christian Desrosiers","doi":"10.1109/ICIP.2016.7533177","DOIUrl":null,"url":null,"abstract":"Compressed sensing is a powerful approach to reconstruct high-quality images using a small number of samples. This paper presents a novel compressed sensing method that uses a probabilistic atlas to impose spatial constraints on the reconstruction of brain magnetic resonance imaging (MRI) data. A weighted total variation (TV) model is proposed to characterize the spatial distribution of gradients in the brain, and incorporate this information in the reconstruction process. Experiments on T1-weighted MR images from the ABIDE dataset show our proposed method to outperform the standard uniform TV model, as well as state-of-the-art approaches, for low sampling rates and high noise levels.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"18 1","pages":"4329-4333"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A weighted total variation approach for the atlas-based reconstruction of brain MR data\",\"authors\":\"Mingli Zhang, Kuldeep Kumar, Christian Desrosiers\",\"doi\":\"10.1109/ICIP.2016.7533177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing is a powerful approach to reconstruct high-quality images using a small number of samples. This paper presents a novel compressed sensing method that uses a probabilistic atlas to impose spatial constraints on the reconstruction of brain magnetic resonance imaging (MRI) data. A weighted total variation (TV) model is proposed to characterize the spatial distribution of gradients in the brain, and incorporate this information in the reconstruction process. Experiments on T1-weighted MR images from the ABIDE dataset show our proposed method to outperform the standard uniform TV model, as well as state-of-the-art approaches, for low sampling rates and high noise levels.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"18 1\",\"pages\":\"4329-4333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7533177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A weighted total variation approach for the atlas-based reconstruction of brain MR data
Compressed sensing is a powerful approach to reconstruct high-quality images using a small number of samples. This paper presents a novel compressed sensing method that uses a probabilistic atlas to impose spatial constraints on the reconstruction of brain magnetic resonance imaging (MRI) data. A weighted total variation (TV) model is proposed to characterize the spatial distribution of gradients in the brain, and incorporate this information in the reconstruction process. Experiments on T1-weighted MR images from the ABIDE dataset show our proposed method to outperform the standard uniform TV model, as well as state-of-the-art approaches, for low sampling rates and high noise levels.